Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zefeng Yang is active.

Publication


Featured researches published by Zefeng Yang.


PLOS ONE | 2013

Mutation of the Light-Induced Yellow Leaf 1 Gene, Which Encodes a Geranylgeranyl Reductase, Affects Chlorophyll Biosynthesis and Light Sensitivity in Rice

Yong Zhou; Zhiyun Gong; Zefeng Yang; Yuan Yuan; Jinyan Zhu; Man Wang; Shujun Wu; Zhiqin Wang; Chuandeng Yi; Tinghua Xu; Myongchol Ryom; Minghong Gu; Guohua Liang

Chlorophylls (Chls) are crucial for capturing light energy for photosynthesis. Although several genes responsible for Chl biosynthesis were characterized in rice (Oryza sativa), the genetic properties of the hydrogenating enzyme involved in the final step of Chl synthesis remain unknown. In this study, we characterized a rice light-induced yellow leaf 1-1 (lyl1-1) mutant that is hypersensitive to high-light and defective in the Chl synthesis. Light-shading experiment suggested that the yellowing of lyl1-1 is light-induced. Map-based cloning of LYL1 revealed that it encodes a geranylgeranyl reductase. The mutation of LYL1 led to the majority of Chl molecules are conjugated with an unsaturated geranylgeraniol side chain. LYL1 is the firstly defined gene involved in the reduction step from Chl-geranylgeranylated (ChlGG) and geranylgeranyl pyrophosphate (GGPP) to Chl-phytol (ChlPhy) and phytyl pyrophosphate (PPP) in rice. LYL1 can be induced by light and suppressed by darkness which is consistent with its potential biological functions. Additionally, the lyl1-1 mutant suffered from severe photooxidative damage and displayed a drastic reduction in the levels of α-tocopherol and photosynthetic proteins. We concluded that LYL1 also plays an important role in response to high-light in rice.


Genetics | 2015

Natural Variations in SLG7 Regulate Grain Shape in Rice

Yong Zhou; Jun Miao; Gu H; Peng X; Leburu M; Yuan F; Gao Y; Yajun Tao; Jinyan Zhu; Zhiyun Gong; Chuandeng Yi; Minghong Gu; Zefeng Yang; Guohua Liang

Rice (Oryza sativa) grain shape, which is controlled by quantitative trait loci (QTL), has a strong effect on yield production and quality. However, the molecular basis for grain development remains largely unknown. In this study, we identified a novel QTL, Slender grain on chromosome 7 (SLG7), that is responsible for grain shape, using backcross introgression lines derived from 9311 and Azucena. The SLG7 allele from Azucena produces longer and thinner grains, although it has no influence on grain weight and yield production. SLG7 encodes a protein homologous to LONGIFOLIA 1 and LONGIFOLIA 2, both of which increase organ length in Arabidopsis. SLG7 is constitutively expressed in various tissues in rice, and the SLG7 protein is located in plasma membrane. Morphological and cellular analyses suggested that SLG7 produces slender grains by longitudinally increasing cell length, while transversely decreasing cell width, which is independent from cell division. Our findings show that the functions of SLG7 family members are conserved across monocots and dicots and that the SLG7 allele could be applied in breeding to modify rice grain appearance.


BMC Evolutionary Biology | 2014

Adaptive evolution and divergent expression of heat stress transcription factors in grasses

Zefeng Yang; Yifan Wang; Yun Gao; Yong Zhou; Enying Zhang; Yunyun Hu; Yuan Yuan; Guohua Liang; Chenwu Xu

BackgroundHeat stress transcription factors (Hsfs) regulate gene expression in response to heat and many other environmental stresses in plants. Understanding the adaptive evolution of Hsf genes in the grass family will provide potentially useful information for the genetic improvement of modern crops to handle increasing global temperatures.ResultsIn this work, we performed a genome-wide survey of Hsf genes in 5 grass species, including rice, maize, sorghum, Setaria, and Brachypodium, by describing their phylogenetic relationships, adaptive evolution, and expression patterns under abiotic stresses. The Hsf genes in grasses were divided into 24 orthologous gene clusters (OGCs) based on phylogeneitc relationship and synteny, suggesting that 24 Hsf genes were present in the ancestral grass genome. However, 9 duplication and 4 gene-loss events were identified in the tested genomes. A maximum-likelihood analysis revealed the effects of positive selection in the evolution of 11 OGCs and suggested that OGCs with duplicated or lost genes were more readily influenced by positive selection than other OGCs. Further investigation revealed that positive selection acted on only one of the duplicated genes in 8 of 9 paralogous pairs, suggesting that neofunctionalization contributed to the evolution of these duplicated pairs. We also investigated the expression patterns of rice and maize Hsf genes under heat, salt, drought, and cold stresses. The results revealed divergent expression patterns between the duplicated genes.ConclusionsThis study demonstrates that neofunctionalization by changes in expression pattern and function following gene duplication has been an important factor in the maintenance and divergence of grass Hsf genes.


Acta Agronomica Sinica | 2010

Cloning of an ABC1-like Gene ZmABC1-10 and Its Responses to Cadmium and Other Abiotic Stresses in Maize (Zea mays L.)

Qing-Song Gao; Zefeng Yang; Yong Zhou; Dan Zhang; Cheng-Hai Yan; Guohua Liang; Chen-Wu Xu

Cadmium is a non-essential heavy metal that is extremely toxic to plants and animals. Previous studies have shown that several proteins associated with the Activity of the bc1 complex (ABC1) protein family participate in plant responses to cadmium. Here we presented the cloning and characterization of an ABC1-like gene, ZmABC1-10, from maize (Zea mays L.). The full-length 2519 bp cDNA of maize ABC1-10 gene contained an open reading frame (ORF) of 2250 bp encoding a membrane-binding protein with a predicted localization in the chloroplast. A promoter scan detected numerous cis-elements implicated in abiotic stress, light, and phytohormone responses. Expression profile analysis indicated most expression of this gene occurred in green tissues. Cadmium treatment revealed that expression of this gene could be induced and was correlated with plant development. In addition to cadmium, ZmABC1-10 expression was also affected by a broad range of abiotic factors, such as ABA, H2O2, drought and darkness. A total of 19 members of maize ABC1 family were identified with the B73 maize genomic sequence. Phylogenetic analysis using 148 ABC1 proteins from 8 representative species of plant kingdom revealed that divergence occurred and species-specific expansion contributed to the evolution of this family in plants. Collectively, our data suggest that ZmAbc1-10 is a cadmium-esponsive factor and may play potential roles in the plant adaption to diverse abiotic stresses.


Scientific Reports | 2016

Origin of the plant Tm-1-like gene via two independent horizontal transfer events and one gene fusion event

Zefeng Yang; Li Liu; Huimin Fang; Pengcheng Li; Shuhui Xu; Wei Cao; Chenwu Xu; Jinling Huang; Yong Zhou

The Tomato mosaic virus (ToMV) resistance gene Tm-1 encodes a direct inhibitor of ToMV RNA replication to protect tomato from infection. The plant Tm-1-like (Tm-1L) protein is predicted to contain an uncharacterized N-terminal UPF0261 domain and a C-terminal TIM-barrel signal transduction (TBST) domain. Homologous searches revealed that proteins containing both of these two domains are mainly present in charophyte green algae and land plants but absent from glaucophytes, red algae and chlorophyte green algae. Although Tm-1 homologs are widely present in bacteria, archaea and fungi, UPF0261- and TBST-domain-containing proteins are generally encoded by different genes in these linages. A co-evolution analysis also suggested a putative interaction between UPF0261- and TBST-domain-containing proteins. Phylogenetic analyses based on homologs of these two domains revealed that plants have acquired UPF0261- and TBST-domain-encoding genes through two independent horizontal gene transfer (HGT) events before the origin of land plants from charophytes. Subsequently, gene fusion occurred between these two horizontally acquired genes and resulted in the origin of the Tm-1L gene in streptophytes. Our results demonstrate a novel evolutionary mechanism through which the recipient organism may acquire genes with functional interaction through two different HGT events and further fuse them into one functional gene.


Scientific Reports | 2016

Exploitation of heterosis loci for yield and yield components in rice using chromosome segment substitution lines

Yajun Tao; Jinyan Zhu; Jianjun Xu; Liujun Wang; Houwen Gu; Ronghua Zhou; Zefeng Yang; Yong Zhou; Guohua Liang

We constructed 128 chromosome segment substitution lines (CSSLs), derived from a cross between indica rice (Oryza sativa L.) 9311 and japonica rice Nipponbare, to investigate the genetic mechanism of heterosis. Three photo-thermo-sensitive-genic male sterile lines (Guangzhan63-4s, 036s, and Lian99s) were selected to cross with each CSSL to produce testcross populations (TCs). Field experiments were carried out in 2009, 2011, and 2015 to evaluate yield and yield-related traits in the CSSLs and TCs. Four traits (plant height, spikelet per panicle, thousand-grain weight, and grain yield per plant) were significantly related between CSSLs and TCs. In the TCs, plant height, panicle length, seed setting rate, thousand-grain weight, and grain yield per plant showed partial dominance, indicating that dominance largely contributes to heterosis of these five traits. While overdominance may be more important for heterosis of panicles per plant and spikelet per panicle. Based on the bin-maps of CSSLs and TCs, we detected 62 quantitative trait loci (QTLs) and 97 heterotic loci (HLs) using multiple linear regression analyses. Some of these loci were clustered together. The identification of QTLs and HLs for yield and yield-related traits provide useful information for hybrid rice breeding, and help to uncover the genetic basis of rice heterosis.


Rice | 2017

GNS4 , a novel allele of DWARF11 , regulates grain number and grain size in a high-yield rice variety

Yong Zhou; Yajun Tao; Jinyan Zhu; Jun Miao; Jun Liu; Yanhua Liu; Chuandeng Yi; Zefeng Yang; Zhiyun Gong; Guohua Liang

BackgroundRice plays an extremely important role in food safety because it feeds more than half of the world’s population. Rice grain yield depends on biomass and the harvest index. An important strategy to break through the rice grain yield ceiling is to increase the biological yield. Therefore, genes associated with organ size are important targets for rice breeding.ResultsWe characterized a rice mutant gns4 (grain number and size on chromosome 4) with reduced organ size, fewer grains per panicle, and smaller grains compared with those of WT. Map-based cloning indicated that the GNS4 gene, encoding a cytochrome P450 protein, is a novel allele of DWARF11 (D11). A single nucleotide polymorphism (deletion) in the promoter region of GNS4 reduced its expression level in the mutant, leading to reduced grain number and smaller grains. Morphological and cellular analyses suggested that GNS4 positively regulates grain size by promoting cell elongation. Overexpression of GNS4 significantly increased organ size, 1000-grain weight, and panicle size, and subsequently enhanced grain yields in both the Nipponbare and Wuyunjing7 (a high-yielding cultivar) backgrounds. These results suggest that GNS4 is key target gene with possible applications in rice yield breeding.ConclusionGNS4 was identified as a positive regulator of grain number and grain size in rice. Increasing the expression level of this gene in a high-yielding rice variety enhanced grain yield. GNS4 can be targeted in breeding programs to increase yields.


PLOS ONE | 2016

Mapping Quantitative Trait Loci Associated with Toot Traits Using Sequencing-Based Genotyping Chromosome Segment Substitution Lines Derived from 9311 and Nipponbare in Rice (Oryza sativa L.)

Yong Zhou; Guichun Dong; Yajun Tao; Chen Chen; Bin Yang; Zefeng Yang; Guohua Liang; Baohe Wang; Yulong Wang

Identification of quantitative trait loci (QTLs) associated with rice root morphology provides useful information for avoiding drought stress and maintaining yield production under the irrigation condition. In this study, a set of chromosome segment substitution lines derived from 9311 as the recipient and Nipponbare as donor, were used to analysis root morphology. By combining the resequencing-based bin-map with a multiple linear regression analysis, QTL identification was conducted on root number (RN), total root length (TRL), root dry weight (RDW), maximum root length (MRL), root thickness (RTH), total absorption area (TAA) and root vitality (RV), using the CSSL population grown under hydroponic conditions. A total of thirty-eight QTLs were identified: six for TRL, six for RDW, eight for the MRL, four for RTH, seven for RN, two for TAA, and five for RV. Phenotypic effect variance explained by these QTLs ranged from 2.23% to 37.08%, and four single QTLs had more than 10% phenotypic explanations on three root traits. We also detected the correlations between grain yield (GY) and root traits, and found that TRL, RTH and MRL had significantly positive correlations with GY. However, TRL, RDW and MRL had significantly positive correlations with biomass yield (BY). Several QTLs identified in our population were co-localized with some loci for grain yield or biomass. This information may be immediately exploited for improving rice water and fertilizer use efficiency for molecular breeding of root system architectures.


Frontiers in Plant Science | 2018

QTL-By-Environment Interaction in the Response of Maize Root and Shoot Traits to Different Water Regimes

Pengcheng Li; Yingying Zhang; Shuangyi Yin; Pengfei Zhu; Ting Pan; Yang Xu; Jieyu Wang; Derong Hao; Huimin Fang; Chenwu Xu; Zefeng Yang

Drought is a major abiotic stress factor limiting maize production, and elucidating the genetic control of root system architecture and plasticity to water-deficit stress is a crucial problem to improve drought adaptability. In this study, 13 root and shoot traits and genetic plasticity were evaluated in a recombinant inbred line (RIL) population under well-watered (WW) and water stress (WS) conditions. Significant phenotypic variation was observed for all observed traits both under WW and WS conditions. Most of the measured traits showed significant genotype–environment interaction (GEI) in both environments. Strong correlations were observed among traits in the same class. Multi-environment (ME) and multi-trait (MT) QTL analyses were conducted for all observed traits. A total of 48 QTLs were identified by ME, including 15 QTLs associated with 9 traits showing significant QTL-by-Environment interactions (QEI). QTLs associated with crown root angle (CRA2) and crown root length (CRL1) were identified as having antagonistic pleiotropic effects, while 13 other QTLs showed signs of conditional neutrality (CN), including 9 and 4 QTLs detected under WW and WS conditions, respectively. MT analysis identified 14 pleiotropic QTLs for 13 traits, SNP20 ([email protected] cM) was associated with the length of crown root (CR), primary root (PR), and seminal root (SR) and might contribute to increases in root length under WS condition. Taken together, these findings contribute to our understanding of the phenotypic and genotypic patterns of root plasticity in response to water deficiency, which will be useful to improve drought tolerance in maize.


Scientific Reports | 2017

Ancestor of land plants acquired the DNA-3-methyladenine glycosylase ( MAG ) gene from bacteria through horizontal gene transfer

Huimin Fang; Liexiang Huangfu; Rujia Chen; Pengcheng Li; Shuhui Xu; Enying Zhang; Wei Cao; Li Liu; Youli Yao; Guohua Liang; Chenwu Xu; Yong Zhou; Zefeng Yang

The origin and evolution of land plants was an important event in the history of life and initiated the establishment of modern terrestrial ecosystems. From water to terrestrial environments, plants needed to overcome the enhanced ultraviolet (UV) radiation and many other DNA-damaging agents. Evolving new genes with the function of DNA repair is critical for the origin and radiation of land plants. In bacteria, the DNA-3-methyladenine glycosylase (MAG) recognizes of a variety of base lesions and initiates the process of the base excision repair for damaged DNA. The homologs of MAG gene are present in all major lineages of streptophytes, and both the phylogenic and sequence similarity analyses revealed that green plant MAG gene originated through an ancient horizontal gene transfer (HGT) event from bacteria. Experimental evidence demonstrated that the expression of the maize ZmMAG gene was induced by UV and zeocin, both of which are known as DNA-damaging agents. Further investigation revealed that Streptophyta MAG genes had undergone positive selection during the initial evolutionary period in the ancestor of land plants. Our findings demonstrated that the ancient HGT of MAG to the ancestor of land plants probably played an important role in preadaptation to DNA-damaging agents in terrestrial environments.

Collaboration


Dive into the Zefeng Yang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yong Zhou

Ministry of Education

View shared research outputs
Top Co-Authors

Avatar

Chenwu Xu

Ministry of Education

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jun Miao

Ministry of Education

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge