Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zeguo Sun is active.

Publication


Featured researches published by Zeguo Sun.


Nucleic Acids Research | 2013

Subpathway-GM: identification of metabolic subpathways via joint power of interesting genes and metabolites and their topologies within pathways

Chunquan Li; Junwei Han; Qianlan Yao; Chendan Zou; Yanjun Xu; Chunlong Zhang; Desi Shang; Lingyun Zhou; Chaoxia Zou; Zeguo Sun; Jing Li; Yunpeng Zhang; Haixiu Yang; Xu Gao; Xia Li

Various ‘omics’ technologies, including microarrays and gas chromatography mass spectrometry, can be used to identify hundreds of interesting genes, proteins and metabolites, such as differential genes, proteins and metabolites associated with diseases. Identifying metabolic pathways has become an invaluable aid to understanding the genes and metabolites associated with studying conditions. However, the classical methods used to identify pathways fail to accurately consider joint power of interesting gene/metabolite and the key regions impacted by them within metabolic pathways. In this study, we propose a powerful analytical method referred to as Subpathway-GM for the identification of metabolic subpathways. This provides a more accurate level of pathway analysis by integrating information from genes and metabolites, and their positions and cascade regions within the given pathway. We analyzed two colorectal cancer and one metastatic prostate cancer data sets and demonstrated that Subpathway-GM was able to identify disease-relevant subpathways whose corresponding entire pathways might be ignored using classical entire pathway identification methods. Further analysis indicated that the power of a joint genes/metabolites and subpathway strategy based on their topologies may play a key role in reliably recalling disease-relevant subpathways and finding novel subpathways.


Oncotarget | 2016

Comprehensive characterization of lncRNA-mRNA related ceRNA network across 12 major cancers.

Yunpeng Zhang; Yanjun Xu; Li Feng; Feng Li; Zeguo Sun; Tan Wu; Xinrui Shi; Jing Li; Xia Li

Recent studies indicate that long noncoding RNAs (lncRNAs) can act as competing endogenous RNAs (ceRNAs) to indirectly regulate mRNAs through shared microRNAs, which represents a novel layer of RNA crosstalk and plays critical roles in the development of tumor. However, the global regulation landscape and characterization of these lncRNA related ceRNA crosstalk in cancers is still largely unknown. Here, we systematically characterized the lncRNA related ceRNA interactions across 12 major cancers and the normal physiological states by integrating multidimensional molecule profiles of more than 5000 samples. Our study suggest the large difference of ceRNA regulation between normal and tumor states and the higher similarity across similar tissue origin of tumors. The ceRNA related molecules have more conserved features in tumor networks and they play critical roles in both the normal and tumorigenesis processes. Besides, lncRNAs in the pan-cancer ceRNA network may be potential biomarkers of tumor. By exploring hub lncRNAs, we found that these conserved key lncRNAs dominate variable tumor hallmark processes across pan-cancers. Network dynamic analysis highlights the critical roles of ceRNA regulation in tumorigenesis. By analyzing conserved ceRNA interactions, we found that miRNA mediate ceRNA regulation showed different patterns across pan-cancer; while analyzing the cancer specific ceRNA interactions reveal that lncRNAs synergistically regulated tumor driver genes of cancer hallmarks. Finally, we found that ceRNA modules have the potential to predict patient survival. Overall, our study systematically dissected the lncRNA related ceRNA networks in pan-cancer that shed new light on understanding the molecular mechanism of tumorigenesis.


Scientific Reports | 2015

ESEA: Discovering the Dysregulated Pathways based on Edge Set Enrichment Analysis

Junwei Han; Xinrui Shi; Yunpeng Zhang; Yanjun Xu; Ying Jiang; Chunlong Zhang; Li Feng; Haixiu Yang; Desi Shang; Zeguo Sun; Fei Su; Chunquan Li; Xia Li

Pathway analyses are playing an increasingly important role in understanding biological mechanism, cellular function and disease states. Current pathway-identification methods generally focus on only the changes of gene expression levels; however, the biological relationships among genes are also the fundamental components of pathways, and the dysregulated relationships may also alter the pathway activities. We propose a powerful computational method, Edge Set Enrichment Analysis (ESEA), for the identification of dysregulated pathways. This provides a novel way of pathway analysis by investigating the changes of biological relationships of pathways in the context of gene expression data. Simulation studies illustrate the power and performance of ESEA under various simulated conditions. Using real datasets from p53 mutation, Type 2 diabetes and lung cancer, we validate effectiveness of ESEA in identifying dysregulated pathways. We further compare our results with five other pathway enrichment analysis methods. With these analyses, we show that ESEA is able to help uncover dysregulated biological pathways underlying complex traits and human diseases via specific use of the dysregulated biological relationships. We develop a freely available R-based tool of ESEA. Currently, ESEA can support pathway analysis of the seven public databases (KEGG; Reactome; Biocarta; NCI; SPIKE; HumanCyc; Panther).


Oncotarget | 2015

Subpathway-GMir: identifying miRNA-mediated metabolic subpathways by integrating condition-specific genes, microRNAs, and pathway topologies.

Li Feng; Yanjun Xu; Yunpeng Zhang; Zeguo Sun; Junwei Han; Chunlong Zhang; Haixiu Yang; Desi Shang; Fei Su; Xinrui Shi; Shang Li; Chunquan Li; Xia Li

MicroRNAs (miRNAs) regulate disease-relevant metabolic pathways. However, most current pathway identification methods fail to consider miRNAs in addition to genes when analyzing pathways. We developed a powerful method called Subpathway-GMir to construct miRNA-regulated metabolic pathways and to identify miRNA-mediated subpathways by considering condition-specific genes, miRNAs, and pathway topologies. We used Subpathway-GMir to analyze two liver hepatocellular carcinomas (LIHC), one stomach adenocarcinoma (STAD), and one type 2 diabetes (T2D) data sets. Results indicate that Subpathway-GMir is more effective in identifying phenotype-associated metabolic pathways than other methods and our results are reproducible and robust. Subpathway-GMir provides a flexible platform for identifying abnormal metabolic subpathways mediated by miRNAs, and may help to clarify the roles that miRNAs play in a variety of diseases. The Subpathway-GMir method has been implemented as a freely available R package.


BioMed Research International | 2014

MPINet: metabolite pathway identification via coupling of global metabolite network structure and metabolomic profile.

Feng Li; Yanjun Xu; Desi Shang; Haixiu Yang; Wei Liu; Junwei Han; Zeguo Sun; Qianlan Yao; Chunlong Zhang; Jiquan Ma; Fei Su; Li Feng; Xinrui Shi; Yunpeng Zhang; Jing Li; Qi Gu; Xia Li; Chunquan Li

High-throughput metabolomics technology, such as gas chromatography mass spectrometry, allows the analysis of hundreds of metabolites. Understanding that these metabolites dominate the study condition from biological pathway perspective is still a significant challenge. Pathway identification is an invaluable aid to address this issue and, thus, is urgently needed. In this study, we developed a network-based metabolite pathway identification method, MPINet, which considers the global importance of metabolites and the unique character of metabolomic profile. Through integrating the global metabolite functional network structure and the character of metabolomic profile, MPINet provides a more accurate metabolomic pathway analysis. This integrative strategy simultaneously captures the global nonequivalence of metabolites in a pathway and the bias from metabolomic experimental technology. We then applied MPINet to four different types of metabolite datasets. In the analysis of metastatic prostate cancer dataset, we demonstrated the effectiveness of MPINet. With the analysis of the two type 2 diabetes datasets, we show that MPINet has the potentiality for identifying novel pathways related with disease and is reliable for analyzing metabolomic data. Finally, we extensively applied MPINet to identify drug sensitivity related pathways. These results suggest MPINets effectiveness and reliability for analyzing metabolomic data across multiple different application fields.


Scientific Reports | 2017

The LncRNA Connectivity Map: Using LncRNA Signatures to Connect Small Molecules, LncRNAs, and Diseases

Haixiu Yang; Desi Shang; Yanjun Xu; Chunlong Zhang; Li Feng; Zeguo Sun; Xinrui Shi; Yunpeng Zhang; Junwei Han; Fei Su; Chunquan Li; Xia Li

Well characterized the connections among diseases, long non-coding RNAs (lncRNAs) and drugs are important for elucidating the key roles of lncRNAs in biological mechanisms in various biological states. In this study, we constructed a database called LNCmap (LncRNA Connectivity Map), available at http://www.bio-bigdata.com/LNCmap/, to establish the correlations among diseases, physiological processes, and the action of small molecule therapeutics by attempting to describe all biological states in terms of lncRNA signatures. By reannotating the microarray data from the Connectivity Map database, the LNCmap obtained 237 lncRNA signatures of 5916 instances corresponding to 1262 small molecular drugs. We provided a user-friendly interface for the convenient browsing, retrieval and download of the database, including detailed information and the associations of drugs and corresponding affected lncRNAs. Additionally, we developed two enrichment analysis methods for users to identify candidate drugs for a particular disease by inputting the corresponding lncRNA expression profiles or an associated lncRNA list and then comparing them to the lncRNA signatures in our database. Overall, LNCmap could significantly improve our understanding of the biological roles of lncRNAs and provide a unique resource to reveal the connections among drugs, lncRNAs and diseases.


Scientific Reports | 2015

Global Prioritization of Disease Candidate Metabolites Based on a Multi-omics Composite Network

Qianlan Yao; Yanjun Xu; Haixiu Yang; Desi Shang; Chunlong Zhang; Yunpeng Zhang; Zeguo Sun; Xinrui Shi; Li Feng; Junwei Han; Fei Su; Chunquan Li; Xia Li

The identification of disease-related metabolites is important for a better understanding of metabolite pathological processes in order to improve human medicine. Metabolites, which are the terminal products of cellular regulatory process, can be affected by multi-omic processes. In this work, we propose a powerful method, MetPriCNet, to predict and prioritize disease candidate metabolites based on integrated multi-omics information. MetPriCNet prioritized candidate metabolites based on their global distance similarity with seed nodes in a composite network, which integrated multi-omics information from the genome, phenome, metabolome and interactome. After performing cross-validation on 87 phenotypes with a total of 602 metabolites, MetPriCNet achieved a high AUC value of up to 0.918. We also assessed the performance of MetPriCNet on 18 disease classes and found that 4 disease classes achieved an AUC value over 0.95. Notably, MetPriCNet can also predict disease metabolites without known disease metabolite knowledge. Some new high-risk metabolites of breast cancer were predicted, although there is a lack of known disease metabolite information. A predicted disease metabolic landscape was constructed and analyzed based on the results of MetPriCNet for 87 phenotypes to help us understand the genetic and metabolic mechanism of disease from a global view.


Oncotarget | 2016

Subpathway-LNCE: Identify dysfunctional subpathways competitively regulated by lncRNAs through integrating lncRNA-mRNA expression profile and pathway topologies

Xinrui Shi; Yanjun Xu; Chunlong Zhang; Li Feng; Zeguo Sun; Junwei Han; Fei Su; Yunpeng Zhang; Chunquan Li; Xia Li

Recently, studies have reported that long noncoding RNAs (lncRNAs) can act as modulators of mRNAs through competitively binding to microRNAs (miRNAs) and have relevance to tumorigenesis as well as other diseases. Identify lncRNA competitively regulated subpathway not only can gain insight into the initiation and progression of disease, but also help for understanding the functional roles of lncRNAs in the disease context. Here, we present an effective method, Subpathway-LNCE, which was specifically designed to identify lncRNAs competitively regulated functions and the functional roles of these competitive regulation lncRNAs have not be well characterized in diseases. Moreover, the method integrated lncRNA-mRNA expression profile and pathway topologies. Using prostate cancer datasets and LUAD data sets, we confirmed the effectiveness of our method in identifying disease associated dysfunctional subpathway that regulated by lncRNAs. By analyzing kidney renal clear cell carcinoma related lncRNA competitively regulated subpathway network, we show that Subpathway-LNCE can help uncover disease key lncRNAs. Furthermore, we demonstrated that our method is reproducible and robust. Subpathway-LNCE provide a flexible tool to identify lncRNA competitively regulated signal subpathways underlying certain condition, and help to expound the functional roles of lncRNAs in various status. Subpathway-LNCE has been developed as an R package freely available at https://cran.rstudio.com/web/packages/SubpathwayLNCE/.


Scientific Reports | 2017

LncRNAs2Pathways: Identifying the pathways influenced by a set of lncRNAs of interest based on a global network propagation method

Junwei Han; Siyao Liu; Zeguo Sun; Yunpeng Zhang; Fan Zhang; Chunlong Zhang; Desi Shang; Haixiu Yang; Fei Su; Yanjun Xu; Chunquan Li; Huan Ren; Xia Li

Long non-coding RNAs (lncRNAs) have been demonstrated to play essential roles in diverse cellular processes and biological functions. Exploring the functions associated with lncRNAs may help provide insight into their underlying biological mechanisms. The current methods primarily focus on investigating the functions of individual lncRNAs; however, essential biological functions may be affected by the combinatorial effects of multiple lncRNAs. Here, we have developed a novel computational method, LncRNAs2Pathways, to identify the functional pathways influenced by the combinatorial effects of a set of lncRNAs of interest based on a global network propagation algorithm. A new Kolmogorov–Smirnov-like statistical measure weighted by the network propagation score, which considers the expression correlation among lncRNAs and coding genes, was used to evaluate the biological pathways influenced by the lncRNAs of interest. We have described the LncRNAs2Pathways methodology and illustrated its effectiveness by analyzing three lncRNA sets associated with glioma, prostate and pancreatic cancers. We further analyzed the reproducibility and robustness and compared our results with those of two other methods. Based on these analyses, we showed that LncRNAs2Pathways can effectively identify the functional pathways associated with lncRNA sets. Finally, we implemented this method as a freely available R-based tool.


Molecular BioSystems | 2016

Identification of a lncRNA involved functional module for esophageal cancer subtypes

Shang Li; Yanjun Xu; Zeguo Sun; Li Feng; Desi Shang; Chunlong Zhang; Xinrui Shi; Junwei Han; Fei Su; Haixiu Yang; Jianmei Zhao; Chao Song; Yunpeng Zhang; Chunquan Li; Xia Li

Esophageal cancer (EC) is the sixth most common cause of death from cancer and has two principal histological subtypes: esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC). In addition, Barretts esophagus (BE), due to its strong association with EAC, is generally considered to be a premalignant condition of EAC. lncRNAs are believed to function in initiation and progression of multiple cancers, and therefore should play prominent, but unknown roles in the determination and behavior of different EC subtypes. In this study, by using expression profile re-annotation and differential expression (DE) analysis, we identified DE-lncRNAs and DE-protein-coding genes (DE-PCGs), and then constructed a lncRNA-PCG network, using co-expressed DE-lncRNAs (550) and DE-PCGs (5236), which was also annotated for EC subtypes. After module mining of the network, we obtained twenty candidate lncRNA-PCG modules that were ranked by gene expression and subtype-specification. Within the top four modules, we identified an ESCC specific module, two EAC-BE-specific modules and a heterologous module. Novel candidate lncRNAs were identified, in addition to lncRNAs known to be functionally connected to EC, and could be responsible for the subtype disparities in the GO biological process and at pathway levels.

Collaboration


Dive into the Zeguo Sun's collaboration.

Top Co-Authors

Avatar

Xia Li

Harbin Medical University

View shared research outputs
Top Co-Authors

Avatar

Yanjun Xu

Harbin Medical University

View shared research outputs
Top Co-Authors

Avatar

Yunpeng Zhang

Harbin Medical University

View shared research outputs
Top Co-Authors

Avatar

Chunlong Zhang

Harbin Medical University

View shared research outputs
Top Co-Authors

Avatar

Chunquan Li

Harbin Medical University

View shared research outputs
Top Co-Authors

Avatar

Desi Shang

Harbin Medical University

View shared research outputs
Top Co-Authors

Avatar

Junwei Han

Harbin Medical University

View shared research outputs
Top Co-Authors

Avatar

Fei Su

Harbin Medical University

View shared research outputs
Top Co-Authors

Avatar

Haixiu Yang

Harbin Medical University

View shared research outputs
Top Co-Authors

Avatar

Li Feng

Harbin Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge