Zehao Sun
University of Science and Technology of China
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zehao Sun.
international performance computing and communications conference | 2014
Zehao Sun; Zhenyu Zhu; Long Chen; Hongli Xu; Liusheng Huang
With the development of cloud computing, there is an increasing number of market-based mechanisms for cloud resource allocation. Inspired by the emerging group-buying Web sites, we advocate that group-buying can be applied to cloud resource allocation, and thus cloud providers can benefit from demand aggregation due to the advantage of group-buying in attracting customers, while cloud users can enjoy lower price. However, none of the existing allocation mechanisms is specifically designed for the scenario with group-buying, and it is a challenge for mechanism design to take full advantage of group-buying to maximize the total utility. In this paper, we fill this gap by proposing an innovative auction mechanism. The mechanism is designed based on a combinatorial double auction, in which the allocation algorithm and payment scheme are specifically designed to efficiently generate allocation and compute prices considering group-buying. We theoretically prove that the necessary economic properties in auction design, such as individual rationality, budget balance and truthfulness, are satisfied in our work. The experiments show that the proposed mechanism yields higher total utility, and has good scalability.
international conference on computer communications and networks | 2015
Long Chen; Liusheng Huang; Hongli Xu; Chenkai Yang; Zehao Sun; Xinglong Wang
To tackle the challenging secrecy communication problem in energy harvesting cognitive radio networks, this paper considers an overlay system with one energy harvesting secondary user (SU) to assist primary transmission under the assumption that the primary channel at primary receiver is worse than the eavesdropper. Under such scenario, we optimize the secrecy rate of the PU transmitter by jointly investigating energy harvesting slot, cooperative transmission slot and so on. Given the transmission rate requirement between SUs, the optimization problem is formulated as a mixed integer non-linear (MINLP) program. Due to the special features, we design a polynomial time algorithm SRMA to optimally solve this problem. The algorithm computes the lower bound and upper bound of the transmission power in a secondary transmitter, which are relative with the QoS requirement and energy harvesting parameters. Then SRMA determines its optimal transmission power by iteratively searching between two bounds. Numerical results demonstrate that the primary secrecy rate grows with the increasing energy save ratio and optimal energy save ratio is inversely proportional to the energy harvesting rate.
Iet Communications | 2015
Long Chen; Liusheng Huang; Zehao Sun; Hongli Xu; Hansong Guo
Spectrum auction is an emerging economic scheme to stimulate both primary spectrum operators (POs) and secondary users (SUs) to be involved in spectrum sharing. Previous spectrum auction works mostly assume each PO can only have one type spectrum or each SU can only buy homogeneous spectrum bands from the same PO. However, in a ubiquitous network scenario, each PO possesses heterogeneous spectrum resources such as WiFi, 3G and each SU may request different types of spectrum bands from the same PO. Existing auction schemes cannot be used to effectively solve the problem. Therefore, the authors come out with a lightweight combinatorial double auction to tackle this challenge. Since spectrum combinatorial double auction problem is NP-hard, the authors develop a general greedy algorithm G-Greedy to solve the problem. Inspired by the recent group-buying discounts, they also invent an enhanced scheme E-Greedy to further optimise total utility. They theoretically prove the economy properties of the proposed schemes such as individual rationality, budget balance and truthfulness. Simulation results show that both of the two algorithms can yield higher utilities and are effective.
wireless algorithms systems and applications | 2015
Zehao Sun; Shaojie Tang; He Huang; Liusheng Huang; Zhenyu Zhu; Hansong Guo; Yu E. Sun
Motivated by the reports about assaults on women, especially college girls, in China, we take the first step to explore possibility of using off-the-shelf smartphone for physical assault detection. The most difficult one among challenges in our design is the extraordinary complexity and diversity of various assault instances, which lead to an extremely hard, if not impossible, to perform fine-grained recognition. To this end, we decide to focus on the characteristics of intensity and irregularity, based on which several features are extracted. Moreover, we proposed a combinatorial classification scheme considering individuality of user’s ADLs(Activities of Daily Living) and universality of differences between ADLs and assaults to most people. The data we used for evaluation are collected from simulated assaults which are performed by our volunteers in controlled settings. Our experiment results showed that physical assaults could be distinguished with the majority of ADLs in our proposed feature space, and our proposed system could correctly detect most instances of aggravated assault with low false alarm rate and short delay.
wireless algorithms systems and applications | 2015
Long Chen; Liusheng Huang; Hongli Xu; Hou Deng; Zehao Sun
In underlay spectrum sharing scheme, both channel assignment and power allocation will affect network performance such as throughput, etc. This paper first defines the joint channel and power control problem, which aims to optimize the max-total and max-min throughput of SUs, with interference constraints on primary receivers. For the max-total problem, we formulate the problem as a bipartite matching and derive a maximum weighted matching based algorithm STMA to solve this problem. For the max-min problem, on the basis of the ORA algorithm, we derive a polynomial time algorithm OCAA to iteratively assign the channels to each SU pair under the power constraint. Simulation demonstrates, the throughput of SU network grows with the maximum transmission power of SUs below the interference power of PUs. STMA algorithm achieves an average of 46.67 % performance gain when path loss component \(\alpha =2 \) and 13.08 % enhancement when \(\alpha =3 \) compared with random algorithm. The OCAA algorithm effectively ensures the max-min fairness of the capacity among SU pairs in finite iterations and achieves at least 97 % performance gain than the random method under most cases.
Peer-to-peer Networking and Applications | 2017
Zehao Sun; Shaojie Tang; He Huang; Zhenyu Zhu; Hansong Guo; Yu E. Sun; Liusheng Huang
Motivated by the reports about assaults on women, we take the first step to explore possibility of using off-the-shelf smartphone for physical assault detection. There are several kinds of crime offenses against persons, such as gunshot, battery, abuse, kidnapping and so on, which are distinguished by form, severity, duration, etc. In this paper, we aim at detecting those severe and non-instantaneous physical assaults using accelerometer in smartphone. We collected 100 surveillance videos involving aggravated assaults, and extract the the pattern of actions for an individual under assaulting. The most difficult one among challenges in our design is the extraordinary complexity and diversity of actions under assaulting, which lead to an extremely hard, if not impossible, to perform fine-grained recognition. To this end, we decide to focus on the intensity and irregularity characteristics of aggravated assaults, based on which several features from time domain and frequency domain are extracted. Moreover, we proposed a combinatorial classification scheme considering individuality of user’s ADLs (Activities of Daily Living) and universality of differences between ADLs and assaults to most people. The data we used for training and testing are collected from simulated aggravated assaults which are performed by our volunteers in controlled settings. Our experiment results showed that aggravated assaults could be distinguished with the majority of ADLs in our proposed feature space, and our proposed system could correctly detect most instances of aggravated assault (FNR = 11.75 %) with low false alarm rate (0.067 times per day) and short delay (6.89 s).
knowledge science engineering and management | 2015
Hansong Guo; He Huang; Zehao Sun; Liusheng Huang; Zhenyu Zhu; Shaowei Wang; Pengzhan Wang; Hongli Xu; Hengchang Liu
As the size of smartphone touchscreens becomes larger and larger in recent years, operability with single hand is getting worse especially for female users. We envision that user experience can be significantly improved if smartphones are able to detect the current operating hand and adjust the UI subsequently. In this paper, we propose a novel scheme that leverages user-generated touchscreen traces to recognize current operating hand accurately, with the help of a supervised classifier constructed from twelve different kinds of touchscreen trace features. As opposed to existing solutions that all require users to select the current operating hand or dominant hand manually, our scheme follows a more convenient and practical manner, and allows users to change operating hand frequently without any harm to user experience. We conduct a series of real-world experiments on Samsung Galaxy S4 smartphones, and evaluation results demonstrate that our proposed approach achieves 94.1% accuracy when deciding with a single trace only, and the false positive rate is as low as 2.6%.
international conference on algorithms and architectures for parallel processing | 2015
Yu-e Sun; He Huang; Miaomiao Tian; Zehao Sun; Wei Yang; Hansong Guo; Liusheng Huang
Auction has been regarded as one of the promising methods for the scarce resources allocation due to its fairness. Thus, spectrum auction is an efficient way to allocate licensed spectrum to new demanders for mitigating the spectrum scarcity. Most of the existing studies assume that the spectrum resources are homogeneous. However, spectrums with different frequencies are intrinsically heterogeneous due to their different licensed areas and interference ranges. In this paper, we concentrate on the heterogeneity of spectrum resources and propose a strategyproof double auction mechanism STRUCTURE. The STRUCTURE assumes that all the buyers are selfish and rational, and they will submit their bids for each interested spectrum. To achieve the strategyproofness, many existing double spectrum auction mechanisms adopt the bid-independent methods to construct buyer groups, which may cause unfairness for the buyers with high bid values. To tackle this, we turn to choose a bid-related buyer group construction algorithm, which is more suitable for the laws of market and can further avoid the collusion between buyers. After that, we propose a collusion-free allocation mechanism and a bid-independent payment mechanism to ensure the strategyproofness for both buyers and sellers. Simulation results show that the proposed mechanism significantly improves the spectrum utilization with low running time. Furthermore, we also find that the buyers with higher bid values have a higher winning ratio than the buyers with low bids in the STRUCTURE.
wireless algorithms systems and applications | 2016
Zhenhua Zhao; Zehao Sun; Liusheng Huang; Hansong Guo; Jianxin Wang; Hongli Xu
Running is a good way to keep healthy and relax, while many runners suffer from injuries because of a lack of running knowledge and ignoring the importance of warm-up. Inspired by the fact that more and more people run with smartphones tied up to their arms, we propose a novel system named iRun to alert people to warm up before running. iRun is based on the sensors built in most off-the-shelf smartphones like accelerometers, and it uses human activity recognition (HAR) methods to detect whether the runners warm up or not. The most challenging work is to choose the features that can represent the characteristic of various warm-up actions because different people have different exercise habits. By carefully designing the feature vector which contains features from multi-domains and doing a series of experiments to decide the slide window size and classifier, iRun can achieve 91.4 % true positive (TP) rate in average to distinguish every warm-up action from other movements like running, walk, going upstairs, etc.
wireless algorithms systems and applications | 2016
Hansong Guo; He Huang; Jianxin Wang; Shaojie Tang; Zhenhua Zhao; Zehao Sun; Yu E. Sun; Liusheng Huang; Hengchang Liu
Real-time and fine-grained rain information is crucial not only for climate research, weather prediction, water resources management, agricultural production, urban planning and natural disasters monitoring, but also for applications in our daily lives. However, because of the lack of rain detection systems and the high variable attribute of rain, both in time and space, the rain detection today is still not precise enough. In such context, we propose and implement Tefnut (Tefnut is the rain deity in Ancient Egyptian religion.), a novel system that exploits opportunistically crowdsourced in-vehicle audio clips from an alternative, nowadays omnipresent source, smartphones, to achieve precise detection of rain leveraging a supervised recognizer constructed from a series of refined features. We conduct extensive experiments, and evaluation results demonstrate that Tefnut can detect the rain with 96.0 % true positive rate, when deciding with a one-second-long in-vehicle audio segment only.