Zeineb Ouerghi
Tunis University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zeineb Ouerghi.
Bioresource Technology | 2008
Abdelbasset Lakhdar; Chokri Hafsi; Mokded Rabhi; Ahmed Debez; Francesco Montemurro; Chedly Abdelly; Naceur Jedidi; Zeineb Ouerghi
The efficiency of composted municipal solid wastes (MSW) to reduce the adverse effects of salinity was investigated in Hordeum maritimum under greenhouse conditions. Plants were cultivated in pots filled with soil added with 0 and 40tha(-1) of MSW compost, and irrigated twice a week with tap water at two salinities (0 and 4gl(-1) NaCl). Harvests were achieved at 70 (shoots) and 130 (shoots and roots) days after sowing. At each cutting, dry weight (DW), NPK nutrition, chlorophyll, leaf protein content, Rubisco (ribulose-bisphosphate carboxylase/oxygenase) capacity, and contents of potential toxic elements were determined. Results showed that compost supply increased significantly the biomass production of non salt-treated plants (+80%). This was associated with higher N and P uptake in both shoots (+61% and +80%, respectively) and roots (+48% and +25%, respectively), while lesser impact was observed for K+. In addition, chlorophyll and protein contents as well as Rubisco capacity were significantly improved by the organic amendment. MSW compost mitigated the deleterious effect of salt stress on the plant growth, partly due to improved chlorophyll and protein contents and Rubisco capacity (-15%, -27% and -14%, respectively, in combined treatment, against -45%, -84% and -25%, respectively, in salt-stressed plants without compost addition), which presumably favoured photosynthesis and alleviated salt affect on biomass production by 21%. In addition, plants grown on amended soil showed a general improvement in their heavy metals contents Cu2+, Pb2+, Cd2+, and Zn2+ (in combined treatment: 190%, 53%, 168% and 174% in shoots and 183%, 42%, 42% and 114% in roots, respectively) but remained lower than phytotoxic values. Taken together, these findings suggest that municipal waste compost may be safely applied to salt-affected soils without adverse effects on plant physiology.
Plant Physiology and Biochemistry | 2010
I. Tarchoune; Cristina Sgherri; R. Izzo; M. Lachaal; Zeineb Ouerghi; F. Navari-Izzo
Soils and ground water in nature are dominated by chloride and sulphate salts. There have been several studies concerning NaCl salinity, however, little is known about the Na(2)SO(4) one. The effects on antioxidative activities of chloride or sodium sulphate in terms of the same Na(+) equivalents (25 mM Na(2)SO(4) and 50 mM NaCl) were studied on 30 day-old plants of Ocimum basilicum L., variety Genovese subjected to 15 and 30 days of treatment. Growth, thiobarbituric acid reactive substances (TBARS), relative ion leakage ratio (RLR), hydrogen peroxide (H(2)O(2)), ascorbate and glutathione contents as well as the activities of ascorbate peroxidase (APX, EC 1.11.1.11); glutathione reductase (GR, EC 1.6.4.2) and peroxidases (POD, EC 1.11.1.7) were determined. In leaves, growth was more depressed by 25 mM Na(2)SO(4) than 50 mM NaCl. The higher sensitivity of basil to Na(2)SO(4) was associated with an enhanced accumulation of H(2)O(2), an inhibition of APX, GR and POD activities (with the exception of POD under the 30-day-treatment) and a lower regeneration of reduced ascorbate (AsA) and reduced glutathione (GSH). However, the changes in the antioxidant metabolism were enough to limit oxidative damage, explaining the fact that RLR and TBARS levels were unchanged under both Na(2)SO(4) and NaCl treatment. Moreover, for both salts the 30-day-treatment reduced H(2)O(2) accumulation, unchanged RLR and TBARS levels, and enhanced the levels of antioxidants and antioxidative enzymes, thus achieving an adaptation mechanism against reactive oxygen species.
Photosynthesis Research | 2011
Najoua Msilini; Maha Zaghdoudi; Sridharan Govindachary; Mokhtar Lachaâl; Zeineb Ouerghi; Robert Carpentier
The effect of iron deficiency on photosynthetic electron transport in Photosystem II (PS II) was studied in leaves and thylakoid membranes of lettuce (Lactuca sativa, Romaine variety) plants. PS II electron transport was characterized by oxygen evolution and chlorophyll fluorescence parameters. Iron deficiency in the culture medium was shown to affect water oxidation and the advancement of the S-states. A decrease of maximal quantum yield of PS II and an increase of fluorescence intensity at step J and I of OJIP kinetics were also observed. Thermoluminescence measurements revealed that charge recombination between the quinone acceptor of PS II, QB, and the S2 state of the Mn-cluster was strongly perturbed. Also the dark decay of Chl fluorescence after a single turnover white flash was greatly retarded indicating a slower rate of QA− reoxidation.
Journal of Agricultural and Food Chemistry | 2010
Hela Mahmoudi; Jun Huang; Margaret Y. Gruber; Rym Kaddour; Mokhtar Lachaâl; Zeineb Ouerghi; Abdelali Hannoufa
Salinity inhibits plant growth due to osmotic and ionic effects. However, little is known about the impact of genotype and salinity on biochemical and molecular processes in the leafy vegetable lettuce. We report here evaluations of two lettuce types, Verte (NaCl tolerant) and Romaine (NaCl sensitive), under iso-osmotic 100 mM NaCl and 77 mM Na(2)SO(4) treatments. As compared to Romaine, NaCl-treated Verte displayed better growth, contained lower levels of inorganic cations in leaves, and possessed superior antioxidative capacity due to enhanced carotenoid and phenolics biosynthesis and more active antioxidative enzymes resulting in reduced membrane damage. Both genotypes had relatively similar growth patterns under Na(2)SO(4) treatment, but Romaine showed enhanced root lignification, greater malondialdehyde formation, and suppressed Fe-superoxide dismutase expression in roots as compared with Verte.
Archive | 2006
Chedly Abdelly; Zouhaier Barhoumi; Tahar Ghnaya; Ahmed Debez; Karim Ben Hamed; Riadh Ksouri; Ons Talbi; Fethia Zribi; Zeineb Ouerghi; Abderrazzak Smaoui; Bernhard Huchzermeyer; Claude Grignon
In arid and semi-arid regions, irrigation water contributes to salinisation of the upper layer of the soil, where most root activity takes place. Along the path of plant domestication, many crop species have lost resistance mechanisms to various stress conditions [1], including salt stress [2]. Thus, most crop plants do not fully express their original genetic potential for growth, development and yield under salt stress, and their economic value declines as salinity levels increase [3, 4]. Improving salt resistance of crop plants is, therefore, of major concern in agricultural research. A potential genetic resource for the improvement of salt resistance in crop plants resides among wild populations of halophytes [5, 6]. These can be either domesticated into new, salt-resistant crops, or used as a source of genes to be introduced into crop species by classical breeding or molecular methods.
Journal of the Science of Food and Agriculture | 2012
Salma Sai Kachout; Ameur Ben Mansoura; Rania Mechergui; J. C. Leclerc; Mohamed Nejib Rejeb; Zeineb Ouerghi
BACKGROUND Three annual Atriplex species-A. hortensis var. purpurea, A. hortensis var. rubra and A. rosea-growing on soil with various levels of the heavy metals copper, lead, nickel, and zinc, have been investigated. RESULTS Metal accumulation by Atriplex plants differed among species, levels of polluted soil and tissues. Metals accumulated by Atriplex were mostly distributed in root tissues, suggesting that an exclusion strategy for metal tolerance widely exists in them. The increased concentration of heavy metals in soil led to increases in heavy metal shoot and root concentrations of Ni, Cu, Pb and Zn in plants as compared to those grown on unpolluted soil. Accumulation was higher in roots than shoots for all the heavy metals. None of the plants were suitable for phytoextraction because no hyperaccumulator was identified. However, plants with a high bioconcentration factor and low translocation factor have the potential for phytostabilization. Similarly, the correlation between metal concentrations and translocations in plants (BCFs and TFs) using a linear regression was also statistically significant. CONCLUSION Among the plants studied, var. purpurea was the most efficient in accumulating Pb and Zn in its shoots, whereas var. rubra was most suitable for phytostabilization of sites contaminated with Cu and Ni.
Journal of Plant Physiology | 2013
Najoua Msilini; Jemâa Essemine; Maha Zaghdoudi; Johanne Harnois; Mokhtar Lachaâl; Zeineb Ouerghi; Robert Carpentier
The changes observed photosystem I activity of lettuce plants exposed to iron deficiency were investigated. Photooxidation/reduction kinetics of P700 monitored as ΔA820 in the presence and absence of electron transport inhibitors and acceptors demonstrated that deprivation in iron decreased the population of active photo-oxidizable P700. In the complete absence of iron, the addition of plant inhibitors (DCMU and MV) could not recover the full PSI activity owing to the abolition of a part of P700 centers. In leaves with total iron deprivation (0μM Fe), only 15% of photo-oxidizable P700 remained. In addition, iron deficiency appeared to affect the pool size of NADP(+) as shown by the decline in the magnitude of the first phase of the photooxidation kinetics of P700 by FR-light. Concomitantly, chlorophyll content gradually declined with the iron concentration added to culture medium. In addition, pronounced changes were found in chlorophyll fluorescence spectra. Also, the global fluorescence intensity was affected. The above changes led to an increased rate of cyclic electron transport around PSI mainly supported by stromal reductants.
Journal of Photochemistry and Photobiology B-biology | 2011
Maha Zaghdoudi; Najoua Msilini; Sridharan Govindachary; Mokhtar Lachaâl; Zeineb Ouerghi; Robert Carpentier
Fenugreek (Trigonella foenum graecum) seedlings were exposed to increasing NaCl concentrations in the growth medium to examine the effect of salt stress on the electron transport reactions of photosynthesis. Activities of both photosystem II (PSII), measured by chlorophyll fluorescence, and photosystem I (PSI), measured by P700 photooxidation, were decreased by salt stress. The inhibition proceeded in a two step manner. At the lower salt concentrations used and shorter exposition periods, electron transfer between the quinone acceptors of PSII, Q(A) and Q(B), was strongly retarded as shown by an increased amplitude of the OJ phase of the OJIP chlorophyll fluorescence induction traces and slowed chlorophyll fluorescence relaxation kinetics following a single turn-over flash. The above indicated a disturbance of the Q(B) binding site likely associated with the first step of photoinhibition. In the second step, strong photoinhibition was observed as manifested by increased F(0) values, declined F(v)/F(0) and loss of photoactive P700.
Acta Physiologiae Plantarum | 2013
Khaled Mguis; Ali Albouchi; Mejda Abassi; Ayda Khadhri; Mbarka Ykoubi-Tej; Asma Mahjoub; Nadia Ben Brahim; Zeineb Ouerghi
In order to investigate the effect of salinity on the growth and photosynthesis of the wild wheat and wheat, three accessions of Aegilops geniculata from Ain Zana, Zaghouan and Sbitla and one variety of durum wheat (Triticum durum) were grown in the INRAT greenhouse and treated with different salinity levels. The growth of leaves, water status and gas exchange parameters have been measured at the reproductive stage. The flag leaf length, total leaf dry weight, water status, CO2 assimilation rate, stomatal conductance, intercellular CO2 and transpiration for the three Ae. geniculata accessions and wheat variety significantly decreased with increasing salt. The decline in photosynthesis measured in response to salt stress was proportionally greater than the declines in transpiration, resulting in a reduction of water-use efficiency, at both the leaf and whole-plant levels. Among the factors inhibiting photosynthetic activity, those of a stomatal nature had a greater effect. This study has shown a high degree of variation of these characters mainly related to geographical origin. It was observed also that Sbitla accession was less affected by the imposed salt stress than all the others while Ain Zana was the most affected one.
Journal of the Science of Food and Agriculture | 2013
Najoua Msilini; Samia Oueslati; Thouraya Amdouni; Mohamed Chebbi; Riadh Ksouri; Mokhtar Lachaâl; Zeineb Ouerghi
BACKGROUND Fe deficiency affects food growth and quality in calcareous soils. In this study, the effect of Fe deficiency on growth parameters, phenolic content and antioxidant capacities of two lettuce shoots varieties (Romaine and Vista) were investigated. RESULTS Fresh matter production, pigment (chlorophyll and carotenoid) and Fe2+ content were significantly reduced by Fe deficiency in both varieties. However, restriction of these parameters was particularly pronounced in Romaine variety as compared to Vista. Moreover, Fe deficiency caused decreases in the activity of antioxidant enzymes such as catalase and guaiacol peroxidase, whereas ascorbate peroxidase and malondialdehyde concentrations were not significantly affected. On the other hand, Fe deficiency in Vista variety induced an increase in polyphenol and flavonoid content as compared to Romaine variety. In addition, total antioxidant capacity and antiradical test against DPPH radical decreased in leaves of Romaine variety after 15 days of treatment. CONCLUSION These results suggest that the higher polyphenol content in Vista variety supports the involvement of these components in the stability of antioxidant capacities and then in its protection against oxidative damage generated by Fe deficiency in lettuce plants.