Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zejun Li is active.

Publication


Featured researches published by Zejun Li.


Journal of Virology | 2005

Molecular Basis of Replication of Duck H5N1 Influenza Viruses in a Mammalian Mouse Model

Zejun Li; Hualan Chen; Peirong Jiao; Guohua Deng; Guobin Tian; Yanbing Li; Erich Hoffmann; Robert G. Webster; Yumiko Matsuoka; Kangzhen Yu

ABSTRACT We recently analyzed a series of H5N1 viruses isolated from healthy ducks in southern China since 1999 and found that these viruses had progressively acquired the ability to replicate and cause disease in mice. In the present study, we explored the genetic basis of this change in host range by comparing two of the viruses that are genetically similar but differ in their ability to infect mice and have different pathogenicity in mice. A/duck/Guangxi/22/2001 (DKGX/22) is nonpathogenic in mice, whereas A/duck/Guangxi/35/2001 (DKGX/35) is highly pathogenic. We used reverse genetics to create a series of single-gene recombinants that contained one gene from DKGX/22 and the remaining seven gene segments from DKGX/35. We find that the PA, NA, and NS genes of DKGX/22 could attenuate DKGX/35 virus to some extent, but PB2 of DKGX/22 virus attenuated the DKGX/35 virus dramatically, and an Asn-to-Asp substitution at position 701 of PB2 plays a key role in this function. Conversely, of the recombinant viruses in the DKGX/22 background, only the one that contains the PB2 gene of DKGX/35 was able to replicate in mice. A single amino acid substitution (Asp to Asn) at position 701 of PB2 enabled DKGX/22 to infect and become lethal for mice. These results demonstrate that amino acid Asn 701 of PB2 is one of the important determinants for this avian influenza virus to cross the host species barrier and infect mice, though the replication and lethality of H5N1 influenza viruses involve multiple genes and may result from a constellation of genes. Our findings may help to explain the expansion of the host range and lethality of the H5N1 influenza viruses to humans.


Journal of Virology | 2006

Properties and Dissemination of H5N1 Viruses Isolated during an Influenza Outbreak in Migratory Waterfowl in Western China

Hualan Chen; Yanbing Li; Zejun Li; Jianzhong Shi; Kyoko Shinya; Guohua Deng; Qiaoling Qi; Guobin Tian; Shufang Fan; Haidan Zhao; Yingxiang Sun; Yoshihiro Kawaoka

ABSTRACT H5N1 influenza A viruses are widely distributed among poultry in Asia, but until recently, only a limited number of wild birds were affected. During late April through June 2005, an outbreak of H5N1 virus infection occurred among wild birds at Qinghai Lake in China. Here, we describe the features of this outbreak. First identified in bar-headed geese, the disease soon spread to other avian species populating the lake. Sequence analysis of 15 viruses representing six avian species and collected at different times during the outbreak revealed four different H5N1 genotypes. Most of the isolates possessed lysine at position 627 in the PB2 protein, a residue known to be associated with virulence in mice and adaptation to humans. However, neither of the two index viruses possessed this residue. All of the viruses tested were pathogenic in mice, with the exception of one index virus. We also tested the replication of two viruses isolated during the Qinghai Lake outbreak and one unrelated duck H5N1 virus in rhesus macaques. The Qinghai Lake viruses did not replicate efficiently in these animals, producing no evidence of disease other than transient fever, while the duck virus replicated in multiple organs and caused symptoms of respiratory illness. Importantly, H5N1 viruses isolated in Mongolia, Russia, Inner Mongolia, and the Liaoning Province of China after August 2005 were genetically closely related to one of the genotypes isolated during the Qinghai outbreak, suggesting the dominant nature of this genotype and underscoring the need for worldwide intensive surveillance to minimize its devastating consequences.


PLOS Pathogens | 2009

Identification of Amino Acids in HA and PB2 Critical for the Transmission of H5N1 Avian Influenza Viruses in a Mammalian Host

Yuwei Gao; Ying Zhang; Kyoko Shinya; Guohua Deng; Yongping Jiang; Zejun Li; Yuntao Guan; Guobin Tian; Yanbing Li; Jianzhong Shi; Liling Liu; Xianying Zeng; Zhigao Bu; Xianzhu Xia; Yoshihiro Kawaoka; Hualan Chen

Since 2003, H5N1 influenza viruses have caused over 400 known cases of human infection with a mortality rate greater than 60%. Most of these cases resulted from direct contact with virus-contaminated poultry or poultry products. Although only limited human-to-human transmission has been reported to date, it is feared that efficient human-to-human transmission of H5N1 viruses has the potential to cause a pandemic of disastrous proportions. The genetic basis for H5N1 viral transmission among humans is largely unknown. In this study, we used guinea pigs as a mammalian model to study the transmission of six different H5N1 avian influenza viruses. We found that two viruses, A/duck/Guangxi/35/2001 (DKGX/35) and A/bar-headed goose/Qinghai/3/2005(BHGQH/05), were transmitted from inoculated animals to naïve contact animals. Our mutagenesis analysis revealed that the amino acid asparagine (Asn) at position 701 in the PB2 protein was a prerequisite for DKGX/35 transmission in guinea pigs. In addition, an amino acid change in the hemagglutinin (HA) protein (Thr160Ala), resulting in the loss of glycosylation at 158–160, was responsible for HA binding to sialylated glycans and was critical for H5N1 virus transmission in guinea pigs. These amino acids changes in PB2 and HA could serve as important molecular markers for assessing the pandemic potential of H5N1 field isolates.


Journal of Virology | 2006

The NS1 gene contributes to the virulence of H5N1 avian influenza viruses.

Zejun Li; Yongping Jiang; Peirong Jiao; Aiqin Wang; Fengju Zhao; Guobin Tian; Xijun Wang; Kangzhen Yu; Zhigao Bu; Hualan Chen

ABSTRACT In the present study, we explored the genetic basis underlying the virulence and host range of two H5N1 influenza viruses in chickens. A/goose/Guangdong/1/96 (GS/GD/1/96) is a highly pathogenic virus for chickens, whereas A/goose/Guangdong/2/96 (GS/GD/2/96) is unable to replicate in chickens. These two H5N1 viruses differ in sequence by only five amino acids mapping to the PA, NP, M1, and NS1 genes. We used reverse genetics to create four single-gene recombinants that contained one of the sequence-differing genes from nonpathogenic GS/GD/2/96 and the remaining seven gene segments from highly pathogenic GS/GD/1/96. We determined that the NS1 gene of GS/GD/2/96 inhibited the replication of GS/GD/1/96 in chickens, while the substitution of the PA, NP, or M gene did not change the highly pathogenic properties of GS/GD/1/96. Conversely, of the recombinant viruses generated in the GS/GD/2/96 background, only the virus containing the NS1 gene of GS/GD/1/96 was able to replicate and cause disease and death in chickens. The single-amino-acid difference in the sequence of these two NS1 genes resides at position 149. We demonstrate that a recombinant virus expressing the GS/GD/1/96 NS1 protein with Ala149 is able to antagonize the induction of interferon protein levels in chicken embryo fibroblasts (CEFs), but a recombinant virus carrying a Val149 substitution is not capable of the same effect. These results indicate that the NS1 gene is critical for the pathogenicity of avian influenza virus in chickens and that the amino acid residue Ala149 correlates with the ability of these viruses to antagonize interferon induction in CEFs.


Virology | 2011

An infectious disease of ducks caused by a newly emerged Tembusu virus strain in mainland China.

Pixi Yan; Youshu Zhao; Xu Zhang; Dawei Xu; Xiaoguang Dai; Qiaoyang Teng; Liping Yan; Jiewen Zhou; Xiwen Ji; Shumei Zhang; Guangqing Liu; Yan-Jun Zhou; Yoshihiro Kawaoka; Guangzhi Tong; Zejun Li

During investigations into an outbreak of egg production decline, retarded growth, and even death among ducks in Southeast China, a novel Tembusu virus strain named Tembusu virus Fengxian 2010 (FX2010) was isolated. This virus replicated in embryonated chicken eggs and caused embryo death. In cross-neutralization tests, antiserum to the partial E protein of Tembusu virus Mm1775 strain neutralized FX2010, whereas antiserum to Japanese encephalitis virus did not. FX2010 is an enveloped RNA virus of approximately 45-50 nm in diameter. Sequence analysis of its E and NS5 genes showed that both genes share up to 99.6% nucleotide sequence identity with Baiyangdian virus, and up to 88% nucleotide sequence identity with their counterparts in Tembusu virus. FX2010 was transmitted without mosquito, and caused systemic infection and lesions in experimentally infected ducks. These results indicate that FX2010 and BYD virus are newly emerged Tembusu virus strains that cause an infectious disease in ducks.


Journal of Virology | 2009

Mutational Analysis of Conserved Amino Acids in the Influenza A Virus Nucleoprotein

Zejun Li; Tokiko Watanabe; Masato Hatta; Shinji Watanabe; Asuka Nanbo; Makoto Ozawa; Satoshi Kakugawa; Masayuki Shimojima; S. Yamada; Gabriele Neumann; Yoshihiro Kawaoka

ABSTRACT The nucleoprotein (NP), which has multiple functions during the virus life cycle, possesses regions that are highly conserved among influenza A, B, and C viruses. To better understand the roles of highly conserved NP amino acids in viral replication, we conducted a comprehensive mutational analysis. Using reverse genetics, we attempted to generate 74 viruses possessing mutations at conserved amino acids of NP. Of these, 48 mutant viruses were successfully rescued; 26 mutants were not viable, suggesting a critical role of the respective NP amino acids in viral replication. To identify the step(s) in the viral life cycle that is impaired by these NP mutations, we examined viral-genome replication/transcription, NP localization, and incorporation of viral-RNA segments into progeny virions. We identified 15 amino acid substitutions in NP that inhibited viral-genome replication and/or transcription, resulting in significant growth defects of viruses possessing these substitutions. We also found several NP mutations that affected the efficient incorporation of multiple viral-RNA (vRNA) segments into progeny virions even though a single vRNA segment was incorporated efficiently. The respective conserved amino acids in NP may thus be critical for the assembly and/or incorporation of sets of eight vRNA segments.


Archives of Virology | 2006

Detection of Hong Kong 97-like H5N1 influenza viruses from eggs of Vietnamese waterfowl

Yingli Li; Z. Lin; Jianzhong Shi; Qiaoling Qi; Guohua Deng; Zejun Li; Xiurong Wang; Guobing Tian; Hualan Chen

Summary.Three H5N1 influenza viruses were isolated from shell washes of duck and goose eggs confiscated from travelers coming from Vietnam. All eight gene segments of these viruses share high sequence identity with the H5N1 avian influenza viruses that caused outbreaks in poultry and humans in Hong Kong in 1997. Animal studies indicate that these isolated viruses are able to replicate in mouse lung and could be found in the organs of ducks without causing any clinical signs or death. However, the viruses are highly pathogenic for chickens. Although the source of these recently isolated Hong Kong 97-like H5N1 viruses is undetermined, their detection in the egg shell of duck and goose suggests that this particular genotype of H5N1 virus may have re-emerged in nature or may have been circulating continuously.


PLOS ONE | 2012

Development of a Blocking ELISA for Detection of Serum Neutralizing Antibodies against Newly Emerged Duck Tembusu Virus

Xuesong Li; Guoxin Li; Qiaoyang Teng; Lei Yu; Xiaogang Wu; Zejun Li

Background Since April 2010, domesticated ducks in China have been suffering from an emerging infectious disease characterized by retarded growth, high fever, loss of appetite, decline in egg production, and death. The causative agent was identified as a duck Tembusu virus (DTMUV), a member of the Ntaya virus (NTAV) group within the genus Flavivirus, family Flaviviridae. DTMUV is highly contagious and spreads rapidly in many species of ducks. More than 10 million shelducks have been infected and approximately 1 million died in 2010. The disease remains a constant threat to the duck industry; however, it is not known whether DTMUV can infect humans or other mammalians, despite the fact that the virus has spread widely in southeast China, one of the most densely populated areas in the world. The lack of reliable methods to detect the serum antibodies against DTMUV has limited our ability to conduct epidemiological investigations in various natural hosts and to evaluate the efficiency of vaccines to DTMUV. Methodology/Principal Findings A neutralizing monoclonal antibody (mAb) 1F5 binding specifically to the E protein was developed. Based on the mAb, a blocking enzyme-linked immunosorbent assay (ELISA) was developed for the detection of neutralizing antibodies against DTMUV. The average value of percent inhibition (PI) of 350 duck serum samples obtained from DTMUV-free farms was 1.0% ±5.8% (mean ± SD). The selected cut-off PI values for negative and positive sera were 12.6% (mean +2SD) and 18.4% (mean +3SD), respectively. When compared with a serum neutralizing antibody test (SNT) using chicken embryonated eggs, the rate of coincidence was 70.6% between the blocking ELISA and SNT, based on the titration of 20 duck DTMUV-positive serum samples. Conclusions/Significance The blocking ELISA based on a neutralizing mAb allowed rapid, sensitive, and specific detection of neutralization-related antibodies against DTMUV.


Virology Journal | 2011

Establishing a TaqMan-Based Real-Time PCR Assay for the rapid detection and quantification of the newly emerged duck tembusu virus

Liping Yan; Pixi Yan; Jiewen Zhou; Qiaoyang Teng; Zejun Li

To establish an accurate, rapid, and a quantifiable method for the detection of the newly emerged duck Tembusu virus (DTMUV) that recently caused a widespread infectious disease in ducks in China, we developed a TaqMan-based real-time PCR assay by using E gene-specific primers and a TaqMan probe. This real-time PCR assay was 100 times more sensitive than the conventional PCR. The reproducibility and specificity of the real-time PCR assay were confirmed using plasmids containing E genes or RNAs and DNAs extracted from well-known viruses causing duck diseases. The reliability of this real-time PCR assay was confirmed in 19 of the 24 swab samples, 22 of the 24 tissue samples collected from experimentally infected ducks, as well as 15 of the 21 clinical samples collected from sick ducks since they were verified as DTMUV-positive. The results reveal that the newly established real-time PCR assay might be a useful diagnostic method for epidemiologically investigating and closely observing the newly emerged DTMUV.


Virology | 2014

Development of a live attenuated vaccine candidate against duck Tembusu viral disease

Guoxin Li; Xuyuan Gao; Yali Xiao; Shaoqiong Liu; Shan Peng; Xuesong Li; Ying Shi; Yuee Zhang; Lei Yu; Xiaogang Wu; Pixi Yan; Liping Yan; Qiaoyang Teng; Guangzhi Tong; Zejun Li

Duck Tembusu virus (DTMUV) is a newly emerging pathogenic flavivirus that is causing massive economic loss in the Chinese duck industry. To obtain a live vaccine candidate against the disease, the DTMUV isolate FX2010 was passaged serially in chicken embryo fibroblasts (CEFs). Characterization of FX2010-180P revealed that it was unable to replicate efficiently in chicken embryonated eggs, nor intranasally infect mice or shelducks at high doses of 5.5log10 tissue culture infectious doses (TCID50). FX2010-180P did not induce clinical symptoms, or pathological lesions in ducks at a dose of 5.5log10TCID50. The attenuation of FX2010-180P was due to 19 amino acid changes and 15 synonymous mutations. Importantly, FX2010-180P elicited good immune responses in ducks inoculated at low doses (3.5log10TCID50) and provided complete protection against challenge with a virulent strain. These results indicate that FX2010-180P is a promising candidate live vaccine for prevention of duck Tembusu viral disease.

Collaboration


Dive into the Zejun Li's collaboration.

Top Co-Authors

Avatar

Qinfang Liu

Kansas State University

View shared research outputs
Top Co-Authors

Avatar

Jianmei Yang

Kansas State University

View shared research outputs
Top Co-Authors

Avatar

Wenjun Ma

Kansas State University

View shared research outputs
Top Co-Authors

Avatar

Yoshihiro Kawaoka

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Feng Wen

Mississippi State University

View shared research outputs
Top Co-Authors

Avatar

Lei Yu

Rush University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jinhwa Lee

Kansas State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Duff

Kansas State University

View shared research outputs
Top Co-Authors

Avatar

Robert G. Webster

St. Jude Children's Research Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge