Zekai Hong
Stanford University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zekai Hong.
Journal of Physical Chemistry A | 2010
Zekai Hong; Subith Vasu; David F. Davidson; Ronald K. Hanson
The rate constant of the reaction OH + HO(2) --> H(2)O + O(2) (1) can be inferred at high temperatures from measurements of the rate of its reverse reaction H(2)O + O(2) --> OH + HO(2) (-1). In this work, we used laser absorption of both H(2)O and OH to study the reverse reaction in shock-heated H(2)O/O(2)/Ar mixtures over the temperature range 1600-2200 K. Initial H(2)O concentrations were determined using tunable diode laser absorption near 2.5 microm, and OH concentration time-histories were measured using UV ring dye laser absorption near 306.7 nm. Detailed kinetic analysis of the OH time-history profiles yielded a value for the rate constant k(1) of (3.3 +/- 0.9) x 10(13) [cm(3) mol(-1) s(-1)] between 1600 and 2200 K. The results of this study agree well with those reported by Srinivasan et al. (Srinivasan, N.K.; Su, M.-C.; Sutherland, J.W.; Michael, J.V.; Ruscic, B. J. Phys. Chem. A 2006, 110, 6602-6607) in the temperature regime between 1200 and 1700 K. The combination of the two studies suggests only a weak temperature dependence of k(1) above 1200 K. Data from the current study and that of Keyser (Keyser, L.F. J. Phys. Chem. 1988, 92, 1193-1200) at lower temperatures can be described by the k(1) expression proposed by Baulch et al. (Baulch, D.L.; Cobos, C.J.; Cox, R.A.; Esser, C.; Frank, P.; Just, Th.; Kerr, J.A.; Pilling, M.J.; Troe, J.; Walker, R.W.; Warnatz, J. J. Phys. Chem. Ref. Data 1992, 21, 411), k(1) = 2.89 x 10(13) exp(252/T) [cm(3) mol(-1) s(-1)]. However, it should be noted that some previous studies suggest a k(1) minimum around 1250 K (Hippler, H.; Neunaber, H.; Troe, J. J. Chem. Phys. 1995, 103, 3510-3516) or 1000 K (Kappel, C.; Luther, K.; Troe, J. Phys. Chem. Chem. Phys. 2002, 4, 4392-4398).
Journal of Physical Chemistry A | 2009
Zekai Hong; Aamir Farooq; Ethan A. Barbour; David F. Davidson; Ronald K. Hanson
The thermal decomposition of hydrogen peroxide was measured behind reflected shock waves in hydrogen peroxide/inert gas mixtures using a sensitive laser diagnostic for water vapor. In these mixtures, the formation rate of water is predominantly controlled by the decomposition rate of hydrogen peroxide. Rate determinations were made over a temperature range of 1000-1200 K and a pressure range of 0.9-3.2 atm for both argon and nitrogen carrier gases. Good detection sensitivity for water was achieved using tunable diode laser absorption of water at 2550.96 nm within its v(3) fundamental band. Hydrogen peroxide decomposition rates were found to be independent of pressure at 0.9 and 1.7 atm and showed only slight influence of pressure at 3.2 atm. The best fit of the current data to the low-pressure-limit rate for H(2)O(2) dissociation in argon bath gas is k(1,0) = 10(15.97+/-0.10) exp(-21 220 +/- 250 K/T) [cm(3) mol(-1) s(-1)] (1000-1200 K). Experiments conducted in a nitrogen bath gas show a relative collision efficiency of argon to nitrogen of 0.67.
Journal of Physical Chemistry A | 2010
Zekai Hong; R.D. Cook; David F. Davidson; Ronald K. Hanson
The rate constants of the reactions: (1) H2O2+M-->2OH+M, (2) OH+H2O2-->H2O+HO2 were measured in shock-heated H(2)O(2)/Ar mixtures using laser absorption diagnostics for H(2)O and OH. Time-histories of H(2)O were monitored using tunable diode laser absorption at 2550.96 nm, and time-histories of OH were achieved using ring dye laser absorption at 306 nm. Initial H(2)O(2) concentrations were also determined utilizing the H(2)O diagnostic. On the basis of simultaneous time-history measurements of OH and H(2)O, k(2) was found to be 4.6 x 10(13) exp(-2630 K/T) [cm(3) mol(-1) s(-1)] over the temperature range 1020-1460 K at 1.8 atm; additional measurements of k(2) near 1 atm showed no significant pressure dependence. Similarly, k(1) was found to be 9.5 x 10(15) exp(-21 250 K/T) [cm(3) mol(-1) s(-1)] over the same temperature and pressure range.
Journal of Physical Chemistry A | 2010
Subith Vasu; Zekai Hong; David F. Davidson; Ronald K. Hanson; David M. Golden
Reaction rates of hydroxyl (OH) radicals with ethylene (C₂H₄) and propene (C₃H₆) were studied behind reflected shock waves. OH + ethylene → products (rxn 1) rate measurements were conducted in the temperature range 973-1438 K, for pressures from 2 to 10 atm, and for initial concentrations of ethylene of 500, 751, and 1000 ppm. OH + propene → products (rxn 2) rate measurements spanned temperatures of 890-1366 K, pressures near 2.3 atm, and initial propene concentrations near 300 ppm. OH radicals were produced by shock-heating tert-butyl hydroperoxide, (CH₃)₃-CO-OH, and monitored by laser absorption near 306.7 nm. Rate constants for the reactions of OH with ethylene and propene were extracted by matching modeled and measured OH concentration time-histories in the reflected shock region. Current data are in excellent agreement with previous studies and extend the temperature range of OH + propene data. Transition state theory calculations using recent ab initio results give excellent agreement with our measurements and other data outside our temperature range. Fits (in units of cm³/mol/s) to the abstraction channels of OH + ethylene and OH + propene are k₁ = 2.23 × 10⁴ (T)(2.745) exp(-1115 K/T) for 600-2000 K and k₂ = 1.94 × 10⁶ (T)(2.229) exp(-540 K/T) for 700-1500 K, respectively. A rate constant determination for the reaction TBHP → products (rxn 3) was also obtained in the range 745-1014 K using OH data from behind both incident and reflected shock waves. These high-temperature measurements were fit with previous low-temperature data, and the following rate expression (0.6-2.6 atm), applicable over the temperature range 400-1050 K, was obtained: k₃ (1/s) = 8.13 × 10⁻¹² (T)(7.83) exp(-14598 K/T).
48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition | 2010
David F. Davidson; Guillaume Pilla; Aamir Farooq; R.D. Cook; Zekai Hong; Ronald K. Hanson
There is a critical need for accurate kinetic targets to test and refine large reaction mechanisms for jet fuel, and other practical fuels and surrogates mixtures. To this end, concentration time-histories for four species: C2H4, OH, CO2, and H2O, were measured behind reflected shock waves during n-the oxidation of n-heptane, an important normal alkane fuel surrogate component. Experiments were conducted at temperatures of 1300 to 1600 K and a pressure of 2 atm using a mixture of 300 ppm n-heptane in stoichiometric oxygen (φ=1) in argon. Ethylene was monitored using IR gas laser absorption at 10.53 microns; OH was monitored using UV laser absorption at 306.5 nm; and CO2 and H2O were monitored using tunable IR diode laser absorption at 2.7 and 2.5 microns, respectively. These time-histories provide kinetic targets to test and refine reaction mechanisms for nheptane and also serve to demonstrate the potential of this type of data for validation of reaction mechanisms. Comparisons are made with the predictions of the Sirjean et al./JetSurF 1.0 (2009) reaction mechanism for n-alkanes.
Combustion and Flame | 2011
Zekai Hong; David F. Davidson; Ronald K. Hanson
Proceedings of the Combustion Institute | 2009
Subith Vasu; David F. Davidson; Zekai Hong; Venkatesh Vasudevan; Ronald K. Hanson
Proceedings of the Combustion Institute | 2011
Zekai Hong; David F. Davidson; Ethan A. Barbour; Ronald K. Hanson
Combustion and Flame | 2011
Zekai Hong; King-Yiu Lam; David F. Davidson; Ronald K. Hanson
Shock Waves | 2009
Zekai Hong; Genny A. Pang; Subith Vasu; David F. Davidson; Ronald K. Hanson