Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zekai Lin is active.

Publication


Featured researches published by Zekai Lin.


Journal of the American Chemical Society | 2015

Photosensitizing metal-organic framework enabling visible-light-driven proton reduction by a Wells-Dawson-type polyoxometalate.

Zhi-Ming Zhang; Teng Zhang; Cheng Wang; Zekai Lin; La-Sheng Long; Wenbin Lin

A simple and effective charge-assisted self-assembly process was developed to encapsulate a noble-metal-free polyoxometalate (POM) inside a porous and phosphorescent metal-organic framework (MOF) built from [Ru(bpy)3](2+)-derived dicarboxylate ligands and Zr6(μ3-O)4(μ3-OH)4 secondary building units. Hierarchical organization of photosensitizing and catalytic proton reduction components in such a POM@MOF assembly enables fast multielectron injection from the photoactive framework to the encapsulated redox-active POMs upon photoexcitation, leading to efficient visible-light-driven hydrogen production. Such a modular and tunable synthetic strategy should be applicable to the design of other multifunctional MOF materials with potential in many applications.


Journal of the American Chemical Society | 2016

Robust and Porous β-Diketiminate-Functionalized Metal–Organic Frameworks for Earth-Abundant-Metal-Catalyzed C–H Amination and Hydrogenation

Nathan C. Thacker; Zekai Lin; Teng Zhang; James C. Gilhula; Carter W. Abney; Wenbin Lin

We have designed a strategy for postsynthesis installation of the β-diketiminate (NacNac) functionality in a metal-organic framework (MOF) of UiO-topology. Metalation of the NacNac-MOF (I) with earth-abundant metal salts afforded the desired MOF-supported NacNac-M complexes (M = Fe, Cu, and Co) with coordination environments established by detailed EXAFS studies. The NacNac-Fe-MOF catalyst, I•Fe(Me), efficiently catalyzed the challenging intramolecular sp(3) C-H amination of a series of alkyl azides to afford α-substituted pyrrolidines. The NacNac-Cu-MOF catalyst, I•Cu(THF), was effective in promoting the intermolecular sp(3) C-H amination of cyclohexene using unprotected anilines to provide access to secondary amines in excellent selectivity. Finally, the NacNac-Co-MOF catalyst, I•Co(H), was used to catalyze alkene hydrogenation with turnover numbers (TONs) as high as 700,000. All of the NacNac-M-MOF catalysts were more effective than their analogous homogeneous catalysts and could be recycled and reused without a noticeable decrease in yield. The NacNac-MOFs thus provide a novel platform for engineering recyclable earth-abundant-element-based single-site solid catalysts for many important organic transformations.


Angewandte Chemie | 2016

Hierarchical Integration of Photosensitizing Metal–Organic Frameworks and Nickel‐Containing Polyoxometalates for Efficient Visible‐Light‐Driven Hydrogen Evolution

Xiang-Jian Kong; Zekai Lin; Zhi-Ming Zhang; Teng Zhang; Wenbin Lin

Metal-organic frameworks (MOFs) provide a tunable platform for hierarchically integrating multiple components to effect synergistic functions that cannot be achieved in solution. Here we report the encapsulation of a Ni-containing polyoxometalate (POM) [Ni4 (H2 O)2 (PW9 O34 )2 ](10-) (Ni4 P2 ) into two highly stable and porous phosphorescent MOFs. The proximity of Ni4 P2 to multiple photosensitizers in Ni4 P2 @MOF allows for facile multi-electron transfer to enable efficient visible-light-driven hydrogen evolution reaction (HER) with turnover numbers as high as 1476. Photophysical and electrochemical studies established the oxidative quenching of the excited photosensitizer by Ni4 P2 as the initiating step of HER and explained the drastic catalytic activity difference of the two POM@MOFs. Our work shows that POM@MOF assemblies not only provide a tunable platform for designing highly effective photocatalytic HER catalysts but also facilitate detailed mechanistic understanding of HER processes.


Journal of the American Chemical Society | 2015

Robust, Chiral, and Porous BINAP-Based Metal–Organic Frameworks for Highly Enantioselective Cyclization Reactions

Takahiro Sawano; Nathan C. Thacker; Zekai Lin; Alexandra R. McIsaac; Wenbin Lin

We report here the design of BINAP-based metal-organic frameworks and their postsynthetic metalation with Rh complexes to afford highly active and enantioselective single-site solid catalysts for the asymmetric cyclization reactions of 1,6-enynes. Robust, chiral, and porous Zr-MOFs of UiO topology, BINAP-MOF (I) or BINAP-dMOF (II), were prepared using purely BINAP-derived dicarboxylate linkers or by mixing BINAP-derived linkers with unfunctionalized dicarboxylate linkers, respectively. Upon metalation with Rh(nbd)2BF4 and [Rh(nbd)Cl]2/AgSbF6, the MOF precatalysts I·Rh(BF4) and I·Rh(SbF6) efficiently catalyzed highly enantioselective (up to 99% ee) reductive cyclization and Alder-ene cycloisomerization of 1,6-enynes, respectively. I·Rh catalysts afforded cyclization products at comparable enantiomeric excesses (ees) and 4-7 times higher catalytic activity than the homogeneous controls, likely a result of catalytic site isolation in the MOF which prevents bimolecular catalyst deactivation pathways. However, I·Rh is inactive in the more sterically encumbered Pauson-Khand reactions between 1,6-enynes and carbon monoxide. In contrast, with a more open structure, Rh-functionalized BINAP-dMOF, II·Rh, effectively catalyzed Pauson-Khand cyclization reactions between 1,6-enynes and carbon monoxide at 10 times higher activity than the homogeneous control. II·Rh was readily recovered and used three times in Pauson-Khand cyclization reactions without deterioration of yields or ees. Our work has expanded the scope of MOF-catalyzed asymmetric reactions and showed that the mixed linker strategy can effectively enlarge the open space around the catalytic active site to accommodate highly sterically demanding polycyclic metallocycle transition states/intermediates in asymmetric intramolecular cyclization reactions.


Nature Communications | 2016

Chemoselective single-site Earth-abundant metal catalysts at metal–organic framework nodes

Kuntal Manna; Pengfei Ji; Zekai Lin; Francis X. Greene; Ania Urban; Nathan C. Thacker; Wenbin Lin

Earth-abundant metal catalysts are critically needed for sustainable chemical synthesis. Here we report a simple, cheap and effective strategy of producing novel earth-abundant metal catalysts at metal–organic framework (MOF) nodes for broad-scope organic transformations. The straightforward metalation of MOF secondary building units (SBUs) with cobalt and iron salts affords highly active and reusable single-site solid catalysts for a range of organic reactions, including chemoselective borylation, silylation and amination of benzylic C–H bonds, as well as hydrogenation and hydroboration of alkenes and ketones. Our structural, spectroscopic and kinetic studies suggest that chemoselective organic transformations occur on site-isolated, electron-deficient and coordinatively unsaturated metal centres at the SBUs via σ-bond metathesis pathways and as a result of the steric environment around the catalytic site. MOFs thus provide a novel platform for the development of highly active and affordable base metal catalysts for the sustainable synthesis of fine chemicals.


Journal of the American Chemical Society | 2016

Single-Site Cobalt Catalysts at New Zr8(μ2-O)8(μ2-OH)4 Metal-Organic Framework Nodes for Highly Active Hydrogenation of Alkenes, Imines, Carbonyls, and Heterocycles

Pengfei Ji; Kuntal Manna; Zekai Lin; Ania Urban; Francis X. Greene; Guangxu Lan; Wenbin Lin

We report here the synthesis of robust and porous metal-organic frameworks (MOFs), M-MTBC (M = Zr or Hf), constructed from the tetrahedral linker methane-tetrakis(p-biphenylcarboxylate) (MTBC) and two types of secondary building units (SBUs): cubic M8(μ2-O)8(μ2-OH)4 and octahedral M6(μ3-O)4(μ3-OH)4. While the M6-SBU is isostructural with the 12-connected octahedral SBUs of UiO-type MOFs, the M8-SBU is composed of eight M(IV) ions in a cubic fashion linked by eight μ2-oxo and four μ2-OH groups. The metalation of Zr-MTBC SBUs with CoCl2, followed by treatment with NaBEt3H, afforded highly active and reusable solid Zr-MTBC-CoH catalysts for the hydrogenation of alkenes, imines, carbonyls, and heterocycles. Zr-MTBC-CoH was impressively tolerant of a range of functional groups and displayed high activity in the hydrogenation of tri- and tetra-substituted alkenes with TON > 8000 for the hydrogenation of 2,3-dimethyl-2-butene. Our structural and spectroscopic studies show that site isolation of and open environments around the cobalt-hydride catalytic species at Zr8-SBUs are responsible for high catalytic activity in the hydrogenation of a wide range of challenging substrates. MOFs thus provide a novel platform for discovering and studying new single-site base-metal solid catalysts with enormous potential for sustainable chemical synthesis.


Journal of the American Chemical Society | 2017

Single-Site Cobalt Catalysts at New Zr12(μ3-O)8(μ3-OH)8(μ2-OH)6 Metal–Organic Framework Nodes for Highly Active Hydrogenation of Nitroarenes, Nitriles, and Isocyanides

Pengfei Ji; Kuntal Manna; Zekai Lin; Xuanyu Feng; Ania Urban; Yang Song; Wenbin Lin

We report here the synthesis of a robust and porous metal-organic framework (MOF), Zr12-TPDC, constructed from triphenyldicarboxylic acid (H2TPDC) and an unprecedented Zr12 secondary building unit (SBU): Zr12(μ3-O)8(μ3-OH)8(μ2-OH)6. The Zr12-SBU can be viewed as an inorganic node dimerized from two commonly observed Zr6 clusters via six μ2-OH groups. The metalation of Zr12-TPDC SBUs with CoCl2 followed by treatment with NaBEt3H afforded a highly active and reusable solid Zr12-TPDC-Co catalyst for the hydrogenation of nitroarenes, nitriles, and isocyanides to corresponding amines with excellent activity and selectivity. This work highlights the opportunity in designing novel MOF-supported single-site solid catalysts by tuning the electronic and steric properties of the SBUs.


Energy and Environmental Science | 2016

XAFS investigation of polyamidoxime-bound uranyl contests the paradigm from small molecule studies

Carter W. Abney; Richard T. Mayes; Marek Piechowicz; Zekai Lin; Vyacheslav S. Bryantsev; Gabriel M. Veith; Sheng Dai; Wenbin Lin

Limited resource availability and population growth have motivated interest in harvesting valuable metals from unconventional reserves, but developing selective adsorbents for this task requires structural knowledge of metal binding environments. Amidoxime polymers have been identified as the most promising platform for large-scale extraction of uranium from seawater. However, despite more than 30 years of research, the uranyl coordination environment on these adsorbents has not been positively identified. We report the first XAFS investigation of polyamidoxime-bound uranyl, with EXAFS fits suggesting a cooperative chelating model, rather than the tridentate or η2 motifs proposed by small molecule and computational studies. Samples exposed to environmental seawater also display a feature consistent with a μ2-oxo-bridged transition metal in the uranyl coordination sphere, suggesting in situ formation of a specific binding site or mineralization of uranium on the polymer surface. These unexpected findings challenge several long-held assumptions and have significant implications for development of polymer adsorbents with high selectivity.


Angewandte Chemie | 2017

Surface Modification of Two-Dimensional Metal-Organic Layers Creates Biomimetic Catalytic Microenvironments for Selective Oxidation

Wenjie Shi; Lingyun Cao; Hua Zhang; Xin Zhou; Bing An; Zekai Lin; Ruihan Dai; Jian-Feng Li; Cheng Wang; Wenbin Lin

Microenvironments in enzymes play crucial roles in controlling the activities and selectivities of reaction centers. Herein we report the tuning of the catalytic microenvironments of metal-organic layers (MOLs), a two-dimensional version of metal-organic frameworks (MOFs) with thickness down to a monolayer, to control product selectivities. By modifying the secondary building units (SBUs) of MOLs with monocarboxylic acids, such as gluconic acid, we changed the hydrophobicity/hydrophilicity around the active sites and fine-tuned the selectivity in photocatalytic oxidation of tetrahydrofuran (THF) to exclusively afford butyrolactone (BTL), likely a result of prolonging the residence time of reaction intermediates in the hydrophilic microenvironment of catalytic centers. Our work highlights new opportunities in using functional MOLs as highly tunable and selective two-dimensional catalytic materials.


Journal of the American Chemical Society | 2016

Metal–Organic Frameworks Stabilize Mono(phosphine)–Metal Complexes for Broad-Scope Catalytic Reactions

Takahiro Sawano; Zekai Lin; Dean Boures; Bing An; Cheng Wang; Wenbin Lin

Mono(phosphine)-M (M-PR3; M = Rh and Ir) complexes selectively prepared by postsynthetic metalation of a porous triarylphosphine-based metal-organic framework (MOF) exhibited excellent activity in the hydrosilylation of ketones and alkenes, the hydrogenation of alkenes, and the C-H borylation of arenes. The recyclable and reusable MOF catalysts significantly outperformed their homogeneous counterparts, presumably via stabilizing M-PR3 intermediates by preventing deleterious disproportionation reactions/ligand exchanges in the catalytic cycles.

Collaboration


Dive into the Zekai Lin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhi-Ming Zhang

Northeast Normal University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carter W. Abney

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge