Zeki Naal
University of São Paulo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zeki Naal.
Journal of Pharmacology and Experimental Therapeutics | 2006
Gilberto L. Pardo-Andreu; Renata A. Cavalheiro; Daniel Junqueira Dorta; Zeki Naal; René Delgado; Anibal E. Vercesi; Carlos Curti
Mangiferin acts as a strong antioxidant on mitochondria. However, when in the presence of Ca2+, mangiferin elicits mitochondrial permeability transition (MPT), as evidenced by cyclosporin A-sensitive mitochondrial swelling. We now provide evidence, by means of electrochemical and UV-visible spectroscopical analysis, that Fe(III) coordinates with mangiferin. The resulting mangiferin-Fe(III) complex does not elicit MPT and prevents MPT by scavenging reactive oxygen species. Indeed, the complex protects mitochondrial membrane protein thiols and glutathione from oxidation. Fe(III) also significantly increases the ability of mangiferin to scavenge the 2,2-diphenyl-1-picrylhydrazyl radical, as well as to display antioxidant activity toward antimycin A-induced H2O2 production and t-butyl hydroperoxide-promoted membrane lipid peroxidation in mitochondria. We postulate that coordination with Fe(III) constitutes a potential protective mechanism toward the prooxidant action of mangiferin and other catechol-containing antioxidants regarding MPT induction. Potential therapeutic relevance of this finding for conditions of pathological iron overload is discussed.
Journal of Physical Chemistry A | 2011
Ricardo Vessecchi; Zeki Naal; José N. Canongia Lopes; Sérgio E. Galembeck; Norberto Peporine Lopes
Radical anions are present in several chemical processes, and understanding the reactivity of these species may be described by their thermodynamic properties. Over the last years, the formation of radical ions in the gas phase has been an important issue concerning electrospray ionization mass spectrometry studies. In this work, we report on the generation of radical anions of quinonoid compounds (Q) by electrospray ionization mass spectrometry. The balance between radical anion formation and the deprotonated molecule is also analyzed by influence of the experimental parameters (gas-phase acidity, electron affinity, and reduction potential) and solvent system employed. The gas-phase parameters for formation of radical species and deprotonated species were achieved on the basis of computational thermochemistry. The solution effects on the formation of radical anion (Q(•-)) and dianion (Q(2-)) were evaluated on the basis of cyclic voltammetry analysis and the reduction potentials compared with calculated electron affinities. The occurrence of unexpected ions [Q+15](-) was described as being a reaction between the solvent system and the radical anion, Q(•-). The gas-phase chemistry of the electrosprayed radical anions was obtained by collisional-induced dissociation and compared to the relative energy calculations. These results are important for understanding the formation and reactivity of radical anions and to establish their correlation with the reducing properties by electrospray ionization analyses.
Brain Research Bulletin | 2012
Javier Marín-Prida; Giselle Pentón-Rol; Fernando P. Rodrigues; Luciane C. Alberici; Karina Stringhetta; Andréia Machado Leopoldino; Zeki Naal; Ana Cristina M. Polizello; Alexey Llópiz-Arzuaga; Marcela Nunes Rosa; José Luiz Liberato; Wagner Ferreira dos Santos; Sérgio A. Uyemura; Eduardo Pentón-Arias; Carlos Curti; Gilberto L. Pardo-Andreu
Oxidative stress and mitochondrial impairment are essential in the ischemic stroke cascade and eventually lead to tissue injury. C-Phycocyanin (C-PC) has previously been shown to have strong antioxidant and neuroprotective actions. In the present study, we assessed the effects of C-PC on oxidative injury induced by tert-butylhydroperoxide (t-BOOH) in SH-SY5Y neuronal cells, on transient ischemia in rat retinas, and in the calcium/phosphate-induced impairment of isolated rat brain mitochondria (RBM). In SH-SY5Y cells, t-BOOH induced a significant reduction of cell viability as assessed by an MTT assay, and the reduction was effectively prevented by treatment with C-PC in the low micromolar concentration range. Transient ischemia in rat retinas was induced by increasing the intraocular pressure to 120mmHg for 45min, which was followed by 15min of reperfusion. This event resulted in a cell density reduction to lower than 50% in the inner nuclear layer (INL), which was significantly prevented by the intraocular pre-treatment with C-PC for 15min. In the RBM exposed to 3mM phosphate and/or 100μM Ca(2+), C-PC prevented in the low micromolar concentration range, the mitochondrial permeability transition as assessed by mitochondrial swelling, the membrane potential dissipation, the increase of reactive oxygen species levels and the release of the pro-apoptotic cytochrome c. In addition, C-PC displayed a strong inhibitory effect against an electrochemically-generated Fenton reaction. Therefore, C-PC is a potential neuroprotective agent against ischemic stroke, resulting in reduced neuronal oxidative injury and the protection of mitochondria from impairment.
Brain Research Bulletin | 2014
Yanier Nuñez-Figueredo; Gilberto L. Pardo-Andreu; Jeney Ramírez-Sánchez; René Delgado-Hernández; Estael Ochoa-Rodríguez; Yamila Verdecia-Reyes; Zeki Naal; Alexandre Pastoris Müller; Luis Valmor Cruz Portela; Diogo O. Souza
Because mitochondrial oxidative stress and impairment are important mediators of neuronal damage in neurodegenerative diseases and in brain ischemia/reperfusion, in the present study, we evaluated the antioxidant and mitoprotective effect of a new promising neuroprotective molecule, JM-20, in mitochondria and synaptosomes isolated from rat brains. JM-20 inhibited succinate-mediated H₂O₂ generation in both mitochondria and synaptosomes incubated in depolarized (high K(+)) medium at extremely low micromolar concentration and with identical IC₅₀ values of 0.91 μM. JM-20 also repressed glucose-induced H₂O₂ generation stimulated by rotenone or by antimycin A in synaptosomes incubated in high sodium-polarized medium at extremely low IC₅₀ values of 0.395 μM and 2.452 μM, respectively. JM-20 was unable to react directly with H₂O₂ or with superoxide anion radicals but displayed a cathodic reduction peak at -0.71V, which is close to that of oxygen (-0.8V), indicating high electron affinity. JM-20 also inhibited uncoupled respiration in mitochondria or synaptosomes and was a more effective inhibitor in the presence of the respiratory substrates glutamate/malate than in the presence of succinate. JM-20 also prevented Ca(2+)-induced mitochondrial permeability transition pore opening, membrane potential dissipation and cytochrome c release, which are key pathogenic events during stroke. This molecule also prevented Ca(2+) influx into synaptosomes and mitochondria; the former effect was a consequence of the latter because JM-20 inhibition followed the patterns of carbonyl cyanide p-trifluoromethoxyphenyl hydrazone (FCCP), which is a classic mitochondrial uncoupler. Because the mitochondrion is considered an important source and target of neuronal cell death signaling after an ischemic insult, the antioxidant and protective effects of JM-20 against the deleterious effects of Ca(2+) observed at the mitochondrial level in this study may endow this molecule with the ability to succeed in mitochondrion-targeted strategies to combat ischemic brain damage.
Archive | 2013
Jairo Tronto; Ana Cláudia Bordonal; Zeki Naal; João BarrosValim
Layered nanocomposites represent a special class of multifunctional materials that has received a lot of attention over the last years [1-6]. The specific architecture of these composites promotes a synergistic effect between the organic and inorganic parts, generating compounds with different chemical or physical properties as compared with the isolated components. These composites not only represent a creative alternative to the search for new materials, but also allow the development of innovative industrial applications. The potential uses of layered nanocomposites include intelligent membranes and separation devices, photovoltaic devices, fuel cell components, new catalysts, photocatalysts, chemical and biochemical sensors, smart microelectronic devices, micro-optic devices, new cosmetics, sustained release of active molecules, and special materials combining ceramics and polymers, among others [7-18].
Polyhedron | 1994
Zeki Naal; Elia Tfouni; Assis Vicente Benedetti
Dep. de Fisica e Quimica Faculdad de Ciencias Farmaceuticas de Riberirao Preto Universidad de Sao Paulo USP, Av. do Cafe s/n, 14040-903 Ribeirao Preto-S.P.
Chemico-Biological Interactions | 2013
Luciana M. Kabeya; Carolina N. Fuzissaki; Silvia H. Taleb-Contini; Ana Maria da Costa Ferreira; Zeki Naal; Everton O.L. Santos; Andréa S.G. Figueiredo-Rinhel; Ana Elisa Caleiro Seixas Azzolini; Roberta B. Vermelho; Alberto Malvezzi; Antonia T. do Amaral; João Luis Callegari Lopes; Yara Maria Lucisano-Valim
In the present study, we assessed whether 7-hydroxycoumarin (umbelliferone), 7-hydroxy-4-methylcoumarin, and their acetylated analogs modulate some of the effector functions of human neutrophils and display antioxidant activity. These compounds decreased the ability of neutrophils to generate superoxide anion, release primary granule enzymes, and kill Candida albicans. Cytotoxicity did not mediate their inhibitory effect, at least under the assessed conditions. These coumarins scavenged hypochlorous acid and protected ascorbic acid from electrochemical oxidation in cell-free systems. On the other hand, the four coumarins increased the luminol-enhanced chemiluminescence of human neutrophils stimulated with phorbol-12-myristate-13-acetate and serum-opsonized zymosan. Oxidation of the hydroxylated coumarins by the neutrophil myeloperoxidase produced highly reactive coumarin radical intermediates, which mediated the prooxidant effect observed in the luminol-enhanced chemiluminescence assay. These species also oxidized ascorbic acid and the spin traps α-(4-pyridyl-1-oxide)-N-tert-butylnitrone and 5-dimethyl-1-pyrroline-N-oxide. Therefore, 7-hydroxycoumarin and the derivatives investigated here were able to modulate the effector functions of human neutrophils and scavenge reactive oxidizing species; they also generated reactive coumarin derivatives in the presence of myeloperoxidase. Acetylation of the free hydroxyl group, but not addition of the 4-methyl group, suppressed the biological effects of 7-hydroxycoumarin. These findings help clarify how 7-hydroxycoumarin acts on neutrophils to produce relevant anti-inflammatory effects.
RSC Advances | 2015
Michael González-Durruthy; José M. Monserrat; Luciane C. Alberici; Zeki Naal; Carlos Curti; Humberto González-Díaz
Mitochondrial Permeability Transition Pore (MPTP) is involved in neurodegeneration, hepatotoxicity, cardiac necrosis, nervous and muscular dystrophies. We used different experimental protocols to determine the mitoprotective activity (%P) of different carbon nanotubes (CNT) against mitochondrial swelling in multiple boundary conditions (bj). The experimental boundary conditions explored included different sub-sets of combinations of the following factors b0 = three different mitochondrial swelling assays using the MPT-inductor (Ca2+, Fe3+, H2O2) combined or not with a second MPT-inductor and swelling control assays using MPT-inhibitor (CsA, RR, EGTA), b1 = exposure time (0–600 s), and b2 = CNT concentrations (0–5 μg ml−1). Other boundary conditions (bk) changed were the CNT structural parameters b3 = CNT type (SW, SW + DW, MW), b4 = CNT functionalization type (H, OH, COOH). We also changed different of CNT like b5 = molecular weight/functionalization ratio (minW/maxW) or b6 = maximal and minimal diameter (Dmin/Dmax) as physic-chemical properties (Vk). Next, we employed chemoinformatics ideas to develop a new Perturbation Theory (PT) model able to predict the %P of CNT in multiple experimental conditions. We investigated different output functions of the absorbance ′f(eij) used in PL4/PL5 methods like (eij, 1/eij, 1/eij2, or −log eij) as alternative outputs of the model. The inputs are in the form an additive functions with linear/non-linear terms. The first term is a function 0f(〈eij〉) of the average absorbance 〈eij〉 (expected value) in different assays (bj). The concentration dependent terms are linear functions of concentration, or hill-shaped curves similar to PL4/PL5 functions (used in dose–response analysis). The CNT structure perturbation terms are linear/non-linear functions of Box–Jenkins operators (ΔVkj). The ΔVkj are moving averages (deviations) of the Vk of the CNT with respect to their expected values 〈Vkj〉. The best model found predicted the values of absorbance (measure of mitoprotective activity vs. mitochondrial swelling) with regression coefficient R2 = 0.997 for >6000 experimental data points (q2 = 0.994). Last, we used the model to carry out a simulation of the changes on mitoprotective activity for CNT family after one increase of 1–10% of the minWi and maxDi of CNT.
Journal of Chemical Information and Modeling | 2017
Michael González-Durruthy; Luciane C. Alberici; Carlos Curti; Zeki Naal; David T. Atique-Sawazaki; José M. Vázquez-Naya; Humberto González-Díaz; Cristian R. Munteanu
The study of selective toxicity of carbon nanotubes (CNTs) on mitochondria (CNT-mitotoxicity) is of major interest for future biomedical applications. In the current work, the mitochondrial oxygen consumption (E3) is measured under three experimental conditions by exposure to pristine and oxidized CNTs (hydroxylated and carboxylated). Respiratory functional assays showed that the information on the CNT Raman spectroscopy could be useful to predict structural parameters of mitotoxicity induced by CNTs. The in vitro functional assays show that the mitochondrial oxidative phosphorylation by ATP-synthase (or state V3 of respiration) was not perturbed in isolated rat-liver mitochondria. For the first time a star graph (SG) transform of the CNT Raman spectra is proposed in order to obtain the raw information for a nano-QSPR model. Box-Jenkins and perturbation theory operators are used for the SG Shannon entropies. A modified RRegrs methodology is employed to test four regression methods such as multiple linear regression (LM), partial least squares regression (PLS), neural networks regression (NN), and random forest (RF). RF provides the best models to predict the mitochondrial oxygen consumption in the presence of specific CNTs with R2 of 0.998-0.999 and RMSE of 0.0068-0.0133 (training and test subsets). This work is aimed at demonstrating that the SG transform of Raman spectra is useful to encode CNT information, similarly to the SG transform of the blood proteome spectra in cancer or electroencephalograms in epilepsy and also as a prospective chemoinformatics tool for nanorisk assessment. All data files and R object models are available at https://dx.doi.org/10.6084/m9.figshare.3472349 .
Drug Research | 2012
Yanier Nuñez-Figueredo; L. García-Pupo; Jeney Ramírez-Sánchez; Y. Alcántara-Isaac; O. Cuesta-Rubio; R. D. Hernández; Zeki Naal; Carlos Curti; Gilberto L. Pardo-Andreu
Reactive oxygen species (ROS) are important mediators in a number of neurodegenerative diseases and molecules capable of scavenging ROS may be a feasible strategy for protecting neuronal cells. We previously demonstrated a powerful iron-chelating action of Guttiferone-A (GA), a naturally occurring polyphenol, on oxidative stress injuries initiated by iron overload. Here we addressed the neuroprotective potential of GA in hydrogen peroxide and glutamate-induced injury on rats primary culture of cortical neurons and PC12 cells, respectively, and antioxidant properties concerning scavenging and anti-lipoperoxidative activities in cell-free models. The decrease in cell viability induced by each of the toxins, assessed by [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] (MTT) assay, was significantly attenuated by GA. In addition, GA was found to be a potent antioxidant, as shown by (i) inhibition of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical reduction (EC50=20.0 μM), (ii) prevention against chemically or electrochemically generated superoxide radicals, (iii) inhibition of spontaneous brain lipid peroxidation and (iv) interference with the Fenton reaction. These results indicate that GA exerts neuroprotective effects against H2O2 or glutamate toxicity and its antioxidant activity, demonstrated in vitro, could be at least partly involved. They also suggest a promising potential for GA as a therapeutic agent against neurodegenerative diseases involving ROS and oxidative damage.