Zekui Wu
Harvard University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zekui Wu.
Journal of Immunology | 2000
Jianlin Gong; Najmosama Nikrui; Dongshu Chen; Shigeo Koido; Zekui Wu; Yasuhiro Tanaka; Stephen A. Cannistra; David Avigan; Donald Kufe
Human ovarian carcinomas express the CA-125, HER2/neu, and MUC1 tumor-associated Ags as potential targets for the induction of active specific immunotherapy. In the present studies, human ovarian cancer cells were fused to human dendritic cells (DC) as an alternative strategy to induce immunity against known and unidentified tumor Ags. Fusions of ovarian cancer cells to autologous DC resulted in the formation of heterokaryons that express the CA-125 Ag and DC-derived costimulatory and adhesion molecules. Similar findings were obtained with ovarian cancer cells fused to allogeneic DC. The fusion cells were functional in stimulating the proliferation of autologous T cells. The results also demonstrate that fusions of ovarian cancer cells to autologous or allogeneic DC induce cytolytic T cell activity and lysis of autologous tumor cells by a MHC class I-restricted mechanism. These findings demonstrate that fusions of ovarian carcinoma cells and DC activate T cell responses against autologous tumor and that the fusions are functional when generated with either autologous or allogeneic DC.
Clinical Cancer Research | 2004
David Avigan; Baldev Vasir; Jianlin Gong; Virginia F. Borges; Zekui Wu; Lynne Uhl; Michael B. Atkins; David F. McDermott; Therese Smith; Nancy Giallambardo; Carolyn Stone; Kim Schadt; Jennifer Dolgoff; Jean-Claude Tetreault; Marisa Villarroel; Donald Kufe
Purpose: Dendritic cells (DCs) are potent antigen-presenting cells that are uniquely capable of inducing tumor-specific immune responses. We have conducted a Phase I trial in which patients with metastatic breast and renal cancer were treated with a vaccine prepared by fusing autologous tumor and DCs. Experimental Design: Accessible tumor tissue was disrupted into single cell suspensions. Autologous DCs were prepared from adherent peripheral blood mononuclear cells that were obtained by leukapheresis and cultured in granulocyte macrophage colony-stimulating factor, interleukin 4, and autologous plasma. Tumor cells and DCs were cocultured in the presence of polyethylene glycol to generate the fusions. Fusion cells were quantified by determining the percentage of cells that coexpress tumor and DC markers. Patients were vaccinated with fusion cells at 3-week intervals and assessed weekly for toxicity, and tumor response was assessed at 1, 3, and 6 months after completion of vaccination. Results: The vaccine was generated for 32 patients. Twenty-three patients were vaccinated with 1 × 105 to 4 × 106 fusion cells. Fusion cells coexpressed tumor and DC antigens and stimulated allogeneic T-cell proliferation. There was no significant treatment-related toxicity and no clinical evidence of autoimmunity. In a subset of patients, vaccination resulted in an increased percentage of CD4 and CD8+ T cells expressing intracellular IFN-γ in response to in vitro exposure to tumor lysate. Two patients with breast cancer exhibited disease regressions, including a near complete response of a large chest wall mass. Five patients with renal carcinoma and one patient with breast cancer had disease stabilization. Conclusions: Our findings demonstrate that fusion cell vaccination of patients with metastatic breast and renal cancer is a feasible, nontoxic approach associated with the induction of immunological and clinical antitumor responses.
Blood | 2011
Jacalyn Rosenblatt; Baldev Vasir; Lynne Uhl; Simona Blotta; Claire MacNamara; Poorvi Somaiya; Zekui Wu; Robin Joyce; James D. Levine; Dilani Dombagoda; Yan Emily Yuan; Karen Francoeur; Donna Fitzgerald; Paul G. Richardson; Edie Weller; Kenneth C. Anderson; Donald Kufe; Nikhil C. Munshi; David Avigan
We have developed a tumor vaccine in which patient-derived myeloma cells are chemically fused with autologous dendritic cells (DCs) such that a broad spectrum of myeloma-associated antigens are presented in the context of DC-mediated costimulation. We have completed a phase 1 study in which patients with multiple myeloma underwent serial vaccination with the DC/multiple myeloma fusions in conjunction with granulocyte-macrophage colony-stimulating factor. DCs were generated from adherent mononuclear cells cultured with granulocyte-macrophage colony-stimulating factor, interleukin-4, and tumor necrosis factor-α and fused with myeloma cells obtained from marrow aspirates. Vaccine generation was successful in 17 of 18 patients. Successive cohorts were treated with 1 × 10(6), 2 × 10(6), and 4 × 10(6) fusion cells, respectively, with 10 patients treated at the highest dose level. Vaccination was well tolerated, without evidence of dose-limiting toxicity. Vaccination resulted in the expansion of circulating CD4 and CD8 lymphocytes reactive with autologous myeloma cells in 11 of 15 evaluable patients. Humoral responses were documented by SEREX (Serologic Analysis of Recombinant cDNA Expression Libraries) analysis. A majority of patients with advanced disease demonstrated disease stabilization, with 3 patients showing ongoing stable disease at 12, 25, and 41 months, respectively. Vaccination with DC/multiple myeloma fusions was feasible and well tolerated and resulted in antitumor immune responses and disease stabilization in a majority of patients.
Cancer Research | 2009
Deepak Raina; Rehan Ahmad; Maya Datt Joshi; Li Yin; Zekui Wu; Takeshi Kawano; Baldev Vasir; David Avigan; Surender Kharbanda; Donald Kufe
The mucin 1 (MUC1) oncoprotein is aberrantly overexpressed by approximately 90% of human breast cancers. However, there are no effective agents that directly inhibit MUC1 and induce death of breast cancer cells. We have synthesized a MUC1 inhibitor (called GO-201) that binds to the MUC1 cytoplasmic domain and blocks the formation of MUC1 oligomers in cells. GO-201, and not an altered version, attenuates targeting of MUC1 to the nucleus of human breast cancer cells, disrupts redox balance, and activates the DNA damage response. GO-201 also arrests growth and induces necrotic death. By contrast, the MUC1 inhibitor has no effect on cells null for MUC1 expression or nonmalignant mammary epithelial cells. Administration of GO-201 to nude mice bearing human breast tumor xenografts was associated with loss of tumorigenicity and extensive necrosis, which results in prolonged regression of tumor growth. These findings show that targeting the MUC1 oncoprotein is effective in inducing death of human breast cancer cells in vitro and in tumor models.
British Journal of Haematology | 2005
Baldev Vasir; Virginia F. Borges; Zekui Wu; Daren Grosman; Jacalyn Rosenblatt; Masaki Irie; Kenneth C. Anderson; Donald Kufe; David Avigan
Dendritic cells (DCs) are potent antigen‐presenting cells that are uniquely capable of inducing primary immune responses. Although tumour cells may directly inhibit DC maturation, exposure to tumour products may also result in their activation. Fusions of cancer cells and DCs are being explored as cancer vaccines. The effect of tumour cell fusion on DC maturation and their functional characteristics has not been defined. In the present study, immature and mature DC generated from human CD34+ and peripheral blood precursors were fused to multiple myeloma cells in the presence of polyethylene glycol. Fusion of both immature and mature DCs with tumour cells resulted in an activated phenotype. In this regard, fusion cells expressed interleukin‐12, a cytokine essential for the induction of T‐helper cell type 1 immunity. In contrast to immature DCs, fusion cells also strongly expressed CC‐chemokine receptor R7, which is responsible for DC migration to draining lymph nodes. Fusions generated with both immature and mature DCs also potently stimulated T‐cell expression of γ‐interferon and cytotoxic T lymphocyte killing of tumour targets. These findings demonstrate that tumour cell fusion induces DC maturation and the development of an activated phenotype necessary for their effectiveness as cancer vaccines.
Journal of Immunology | 2008
Baldev Vasir; Zekui Wu; Keith D. Crawford; Jacalyn Rosenblatt; Corrine Zarwan; A. Bissonnette; Donald Kufe; David Avigan
Vaccination of patients with dendritic cell (DC)/breast carcinoma fusions stimulated antitumor immune responses in a majority of patients with metastatic disease but only a subset demonstrate evidence of tumor regression. To define the factors that limit vaccine efficacy, we examined the biological characteristics of DC/breast carcinoma fusions as APCs and the nature of the vaccine-mediated T cell response. We demonstrate that fusion of DCs with breast carcinoma cells up-regulates expression of costimulatory and maturation markers and results in high levels of expression of IL-12 consistent with their role as activated APCs. Fusion cells also express the chemokine receptor CCR7, consistent with their ability to migrate to the draining lymph node. However, DC/breast cancer fusions stimulate a mixed T cell response characterized by the expansion of both activated and regulatory T cell populations, the latter of which is characterized by expression of CTLA-4, FOXP3, IL-10, and the suppression of T cell responses. Our results demonstrate that IL-12, IL-18, and TLR 9 agonist CpG oligodeoxynucleotides reduce the level of fusion-mediated regulatory T cell expansion. Our results also demonstrate that sequential stimulation with DC/breast carcinoma fusions and anti-CD3/CD28 results in the marked expansion of activated tumor-specific T cells. These findings suggest that DC/breast carcinoma fusions are effective APCs, but stimulate inhibitory T cells that limit vaccine efficacy. In contrast, exposure to TLR agonists, stimulatory cytokines, and anti-CD3/CD28 enhances vaccine efficacy by limiting the regulatory T cell response and promoting expansion of activated effector cells.
Cancer Research | 2007
Takeshi Kawano; Masaki Ito; Deepak Raina; Zekui Wu; Jacalyn Rosenblatt; David Avigan; Richard Stone; Donald Kufe
Chronic myelogenous leukemia (CML) results from expression of the Bcr-Abl fusion protein in hematopoietic stem cells. The MUC1 heterodimeric protein is aberrantly overexpressed in diverse human carcinomas. The present studies show that MUC1 is expressed in the human K562 and KU812 CML cell lines. The results show that MUC1 associates with Bcr-Abl through a direct interaction between the Bcr N-terminal region and the MUC1 cytoplasmic domain. Stable silencing of MUC1 decreased cytoplasmic Bcr-Abl levels by promoting Bcr-Abl degradation. Silencing MUC1 was also associated with decreases in K562 and KU812 cell self-renewal capacity and with a more differentiated erythroid phenotype. The results further show that silencing MUC1 increases sensitivity of CML cells to imatinib-induced apoptosis. Analysis of primary CML blasts confirmed that, as found with the CML cell lines, MUC1 blocks differentiation and the apoptotic response to imatinib treatment. These findings indicate that MUC1 stabilizes Bcr-Abl and contributes to the pathogenesis of CML cells by promoting self renewal and inhibiting differentiation and apoptosis.
Bone Marrow Transplantation | 2000
David Avigan; Zekui Wu; Robin Joyce; Anthony Elias; Paul G. Richardson; David F. McDermott; James D. Levine; L Kennedy; N. Giallombardo; Hurley D; Jianlin Gong; Donald Kufe
The present study examines the nature of humoral and cellular immune reconstitution in 28 patients with advanced breast cancer following high-dose chemotherapy with stem cell rescue. Patients underwent testing of T, B, NK and dendritic cell function at serial time points until 1 year post transplant or until the time of disease progression. Abnormalities in T cell phenotype and function were observed following high-dose chemotherapy that persisted for at least 6–12 months. The vast majority of patients experienced an inversion of the CD4/CD8 ratio and demonstrated an anergic response to candida antigen. Mean T cell proliferation in response to PHA and to co-culture with allogeneic monocytes was significantly compromised. In contrast, mean IgG and IgA levels were normal 6 months post transplant and NK cell yields and function were transiently elevated following high-dose chemotherapy. Dendritic cells generated from peripheral blood progenitors displayed a characteristic phenotype and were potent inducers of allogeneic T cell proliferation in the post-transplant period. The study demonstrates that patients undergoing autologous transplantation for breast cancer experience a prolonged period of T cell dysfunction. In contrast, B, NK, and DC recover more rapidly. These findings carry significant implications for the design of post-transplant immunotherapy. Bone Marrow Transplantation (2000) 26, 169–176.
Blood | 2011
Li Yin; Zekui Wu; David Avigan; Jacalyn Rosenblatt; Richard Stone; Surender Kharbanda; Donald Kufe
Acute myeloid leukemia (AML) cells are characterized by unlimited self-renewal and an impaired capacity to undergo terminal differentiation. The MUC1 oncoprotein is aberrantly expressed in AML cells; however, there has been no evidence for involvement of MUC1 in myeloid leukemogenesis. Cell-penetrating peptide inhibitors of the MUC1-C subunit block its oligomerization and thereby oncogenic function. The present results demonstrate that treatment of human MOLM-14 and MV4-11 AML cells with these inhibitors is associated with arrest of growth, induction of late apoptosis/necrosis, and loss of self-renewal capacity. Similar results were obtained with primary blasts from patients with AML. Inhibition of MUC1-C was associated with increases in reactive oxygen species (ROS) and depletion of glutathione. Increases in ROS have been linked to induction of hematopoietic cell differentiation along the myeloid lineage. In this regard, inhibition of MUC1-C was associated with induction of a terminally differentiated myeloid phenotype in AML cell lines and primary blasts by an ROS-dependent mechanism. These findings indicate that MUC1-C function is of importance to AML cell self-renewal and that inhibition of MUC1-C represents a potential therapeutic approach to induce terminal differentiation of AML cells.
Journal of Immunology | 2005
Baldev Vasir; David Avigan; Zekui Wu; Keith D. Crawford; Shawn Turnquist; Jian Ren; Donald Kufe
The MUC1 transmembrane mucin is expressed on the surface of activated human T cells; however, the physiologic signals responsible for the regulation of MUC1 in T cells are not known. The present studies demonstrate that IL-7, but not IL-2 or IL-4, markedly induces MUC1 expression on CD3+ T cells. MUC1 was also up-regulated by IL-15, but to a lesser extent than that found with IL-7. The results show that IL-7 up-regulates MUC1 on CD4+, CD8+, CD25+, CD69+, naive CD45RA+, and memory CD45RO+ T cells. In concert with induction of MUC1 expression by IL-7, activated dendritic cells (DC) that produce IL-7 up-regulate MUC1 on allogeneic CD3+ T cells. DC also induce MUC1 expression on autologous CD3+ T cells in the presence of recall Ag. Moreover, DC-induced MUC1 expression on T cells is blocked by a neutralizing anti-IL-7 Ab. The results also demonstrate that DC induce polarization of MUC1 on T cells at sites opposing the DC-T cell synapse. These findings indicate that DC-mediated activation of Ag-specific T cells is associated with induction and polarization of MUC1 expression by an IL-7-dependent mechanism.