Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zengding Zhou is active.

Publication


Featured researches published by Zengding Zhou.


Cytokine | 2012

GEF-H1/RhoA signalling pathway mediates lipopolysaccharide-induced intercellular adhesion molecular-1 expression in endothelial cells via activation of p38 and NF-κB

Feng Guo; Zengding Zhou; Yi Dou; Jiajun Tang; Chengjin Gao; Jingning Huan

The purpose of study is to investigate the effects of GEF-H1/RhoA pathway in regulating intercellular adhesion molecule-1 (ICAM-1) expression in lipopolysaccharide (LPS)-activated endothelial cells. Exposure of human umbilical vein endothelial cells (HUVECs) to LPS induced GEF-H1 and ICAM-1 expression in dose- and time-dependent up-regulating manners. Pretreatment with Clostridium difficile toxin B-10463 (TcdB-10463), an inhibitor of Rho activity, reduced LPS-related phosphorylation of p65 at Ser 536 in a dose-dependent manner. Inhibition of TLR4 expression significantly blocked LPS-induced RhoA activity, NF-κB transactivation, GEF-H1 and ICAM-1 expression. Coimmunoprecipitation assay indicated that LPS-activated TLR4 and GEF-H1 formed a signalling complex, suggesting that LPS, acting through TLR4, stimulates GEF-H1 expression and RhoA activity, and thereby induces NF-κB transactivation and ICAM-1 gene expression. However, GEF-H1/RhoA regulates LPS-induced NF-κB transactivation and ICAM-1 expression in a MyD88-independent pathway because inhibition of MyD88 expression could not block LPS-induced RhoA activity. Furthermore, pretreatment with Y-27632, an inhibitor of ROCK, significantly reduced LPS-induced p38, ERK1/2 and p65 phosphorylation, indicating that ROCK acts as an upstream effector of p38 and ERK1/2 to promote LPS-induced NF-κB transactivation and ICAM-1 expression. What is more, the p38 inhibitor (SB203580) but not ERK1/2 inhibitor (PD98059) blocked LPS-induce NF-κB transactivation and ICAM-1 expression, which demonstrates that RhoA mediates LPS-induced NF-κB transactivation and ICAM-1 expression dominantly through p38 but not ERK1/2 activation. In summary, our data suggest that LPS-induced ICAM-1 synthesis in HUVECs is regulated by GEF-H1/RhoA-dependent signaling pathway via activation of p38 and NF-κB.


Shock | 2012

Guanine-nucleotide exchange factor H1 mediates lipopolysaccharide-induced interleukin 6 and tumor necrosis factor α expression in endothelial cells via activation of nuclear factor κB.

Feng Guo; Ying Xing; Zengding Zhou; Yi Dou; Jiajun Tang; Chengjin Gao; Jingning Huan

ABSTRACT The development of sepsis is multifactorial. Tissue damage and organ dysfunction may be caused not only by the microorganisms but also by the inflammatory mediators released in response to the infection. Interleukin 6 (IL-6) and tumor necrosis factor &agr; (TNF-&agr;) levels in serum are well known to be upregulated in humans with sepsis and can be used to predict outcome. Using human umbilical vein endothelial cells, we analyzed the role of guanine-nucleotide exchange factor H1 (GEF-H1) on lipopolysaccharide (LPS)–dependent IL-6/TNF-&agr; expression in endothelial cells. Lipopolysaccharide upregulated IL-6 secretion in a dose- and time-dependent manner. Specific inactivation of RhoA/Cdc42/Rac1 by Clostridium difficile toxin B-10463 (TcdB-10463) reduced LPS-induced nuclear factor &kgr;B (NF-&kgr;B) p65 phosphorylation, IL-6/TNF-&agr; messenger RNA (mRNA), and IL-6/TNF-&agr; protein productions. Guanine-nucleotide exchange factor H1 protein expression remained on a high level among 1 to 9 h in response to LPS challenge of endothelial cells. Inhibition of GEF-H1 by specific small interfering RNA or inactivation of Rho-associated kinase with Y-27632 not only significantly reduced LPS-induced p38 and extracellular signal–regulated kinase 1/2 (ERK1/2) activities but also blocked LPS-induced NF-&kgr;B translocation and activation, thereby inhibiting IL-6/TNF-&agr; mRNA and protein productions. Furthermore, SB203580 (p38 inhibitor) but not PD98059 (ERK1/2 inhibitor) blocked LPS-induced NF-&kgr;B activation; however, both inhibitors significantly suppressed IL-6/TNF-&agr; mRNA and protein expression. In summary, our data suggest that LPS rapidly upregulates GEF-H1 expression. Activated Rho-associated kinase by GEF-H1 subsequently activates p38 and ERK1/2, thereby increasing IL-6/TNF-&agr; expression in endothelial cells. P38 and ERK1/2 regulate LPS-induced IL-6/TNF-&agr; expression through an NF-&kgr;B–dependent manner and an NF-&kgr;B–independent manner, respectively.


Surgery | 2013

Guanine nucleotide exchange factor-H1 signaling is involved in lipopolysaccharide-induced endothelial barrier dysfunction

Zengding Zhou; Feng Guo; Yi Dou; Jiajun Tang; Jingning Huan

BACKGROUND Gram-negative bacterial lipopolysaccharide (LPS) leads to the pathologic increase of vascular leakage under septic conditions. However, the mechanisms behind LPS-induced vascular hyperpermeability remain incompletely understood. In this study, we tested hypothesis that guanine nucleotide exchange factor-H1 (GEF-H1) signaling might be a key pathway involved in endothelial cells (ECs) barrier dysfunction. METHODS The roles of GEF-H1 signaling pathway in LPS-induced ECs barrier dysfunction were accessed by Evans blue dye-labeled albumin (EB-albumin) leak across the human umbilical vein EC (HUVEC) monolayers and Western blot assays. Furthermore, the effect of GEF-H1 signaling on LPS-induced alteration of cytoskeletal proteins and disruption of cell-cell junctions were analyzed by immunofluorescent analysis and Western blot assays, respectively. RESULTS We found that LPS could rapidly activated GEF-H1/RhoA/Rho-associated protein kinase (ROCK) signaling pathway in ECs. The LPS-mediated increase in EB-albumin flux across human HUVECs monolayers could be prevented by GEF-H1 depletion or ROCK inactivation. ECs permeability is controlled by actin filaments and cell-cell contact protein complexes. Actin stress fiber formation and/or cell-cell contact proteins loss cause vascular barrier disruption. Here, GEF-H1 knockdown or ROCK inactivation both not only significantly inhibited LPS-induced actin stress fiber formation, phosphorylation of myosin light chain, and myosin-associated phosphatase type 1, but also suppressed LPS-induced loss of occludin, claudin-1, and vascular endothelial (VE)-cadherin in ECs, which suggested that LPS-induced stress fiber formation and cell-cell junctions disruption were closely associated with GEF-H1/RhoA/ROCK signaling activation. CONCLUSION Our findings indicate that GEF-H1/RhoA/ROCK pathway in ECs plays an important role in LPS-mediated alteration of cell morphology and disruption of cell-cell junctions, consequently regulate LPS-induced vascular permeability dysfunction.


Molecular Medicine Reports | 2017

Acinetobacter baumannii quorum-sensing signalling molecule induces the expression of drug-resistance genes

Yi Dou; Fei Song; Feng Guo; Zengding Zhou; Cailian Zhu; Jun Xiang; Jingning Huan

Quorum-sensing signalling molecules such as N-acyl homoserine lactones (AHLs) enable certain Gram-negative bacteria to respond to environmental changes through behaviours, such as biofilm formation and flagellar movement. The present study aimed to identify Acinetobacter baumannii AHLs and assess their influence on antibiotic resistance. A clinical isolate of A. baumannii strain S (AbS) was collected from the wound of a burn patient and high-performance liquid chromatography and tandem quadrupole or quadrupole time-of-flight high-resolution mass spectrometry was used to identify AbS AHLs. Antibiotic sensitivity was assessed in an AHL-deficient AbS mutant (AbS-M), and the expression of drug-resistance genes in the presence of meropenem in AbS, AbS-M and AbS-M treated with the AHL N-3-hydroxy-dodecanoyl-homoserine lactone (N-3-OH-C12-HSL). AbS-M was more sensitive to meropenem and piperacillin than wild-type AbS, but resistance was restored by supplementation with N-3-OH-C12-HSL. In addition, meropenem-treated AbS-M expressed lower levels of the drug-resistance genes oxacillinase 51, AmpC, AdeA and AdeB; treatment with N-3-OH-C12-HSL also restored the expression of these genes. Overall, the results of the present study indicate that N-3-OH-C12-HSL may be involved in regulating the expression of drug-resistance genes in A. baumannii. Therefore, this quorum-sensing signalling molecule may be an important target for treating multidrug-resistant A. baumannii infections.


Surgery | 2016

Yes-associated protein (YAP) signaling regulates lipopolysaccharide-induced tissue factor expression in human endothelial cells

Lei Yi; Xiaoqin Huang; Feng Guo; Zengding Zhou; Yi Dou; Jingning Huan

BACKGROUND Sepsis-induced acute lung injury (ALI) is characterized by fibrin deposition, which indicates the local activation of coagulation. Tissue factor (TF), expressed in the pulmonary microvasculature, acts as a critical initiator of blood coagulation and ALI in sepsis. The molecular mechanism of lipopolysaccharide (LPS)-induced TF expression in endothelial cells (ECs), however, has not been determined. In this study, we implicate the Rho-associated protein kinase (ROCK)/Yes associated protein (YAP)/early growth response (Egr-1) signaling pathway in LPS-induced TF expression in vitro and in sepsis-induced ALI in vivo. METHODS Human umbilical vein ECs incubated with LPS were pretreated with or without the ROCK inhibitor Y-27632, a YAP small, interfering RNA (siRNA) and an Egr-1 siRNA. ROCK, YAP and Egr-1 signaling-induced protein expression was investigated by Western blot. The LPS-induced activation of YAP was analyzed by an immunofluorescent assay. Furthermore, we intratracheally injected YAP siRNA to assess septic ALI in mice by hematoxylin and eosin staining. RESULTS LPS rapidly induced ROCK activation and increased TF expression in ECs. LPS caused YAP shuttling into the nuclei of ECs and combined with Egr-1 via the activation of ROCK. Furthermore, the LPS-mediated TF expression increase was prevented by ROCK inactivation, YAP knockdown and Egr-1 depletion, suggesting that LPS-induced TF expression is closely associated with the ROCK/YAP/Egr-1 signaling pathway in ECs. Finally, an intratracheal injection of YAP siRNA relieved lung injury in septic mice. CONCLUSION This study not only suggests that ROCK/YAP/Egr-1 signaling regulates TF expression after stimulation with LPS in ECs, but it also indicates that LPS-induced activation of YAP signaling plays an important role in septic ALI in mice. Our findings provide a new insight into the pathogenic mechanism of TF expression, which is closely linked to septic ALI, and YAP signaling is considered to be a novel target for therapeutic intervention under septic conditions.


Surgery | 2015

The p38/mitogen-activated protein kinase pathway is implicated in lipopolysaccharide-induced microtubule depolymerization via up-regulation of microtubule-associated protein 4 phosphorylation in human vascular endothelium

Zengding Zhou; Feng Guo; Lei Yi; Jiajun Tang; Yi Dou; Jingning Huan

BACKGROUND Microtubules (MTs) play an important role in lipopolysaccharide (LPS)-induced overexpression of inflammatory cytokines and vascular barrier dysfunction; however, the mechanisms behind MT dynamics changes in the vascular endothelium under septic conditions are still not well understood. METHODS Human umbilical vein endothelial cells (HUVECs) stimulated with LPS were pretreated with or without the specific p38/mitogen-activated protein kinase (MAPK) inhibitor, SB203580. p38/MAPK cascade-induced signaling events and proteins expression were investigated by Western blotting assay. The interaction between p38/MAPK and microtubule-associated protein 4 (MAP4) was examined by immunoprecipitation. Furthermore, the effects of agonists on LPS-induced MT disruption and alteration of acetylated alpha-tubulin (Acet-tubulin) were analyzed by double-immunofluorescent assay and Western blotting analysis. RESULTS In the present study, our results indicated that LPS induced MT depolymerization, but the effects of LPS could be reversed in endothelial cells pretreated with taxol. Furthermore, phosphor-p38 and MAP4 interacted to form a complex after exposure to LPS. LPS-induced MAP4 phosphorylation was greatly suppressed by SB203580, suggesting that activation of p38/MAPK signaling affected MAP4 phosphorylation linked to MT acetylation after stimulation with LPS. CONCLUSION The present study demonstrated that the p38/MAPK signaling pathway might disrupt MT dynamics via phosphorylation of MAP4 in vascular endothelial cells challenged by LPS. Our findings provide novel insights into the pathogenic mechanism of MT disassembly and consider new targets for therapeutic intervention under sepsis or septic shock conditions.


Journal of International Medical Research | 2017

Pseudomonas aeruginosa prevalence, antibiotic resistance and antimicrobial use in Chinese burn wards from 2007 to 2014:

Yi Dou; Jingning Huan; Feng Guo; Zengding Zhou; Yan Shi

Objective To assess the application of antibacterial agents, alongside pathogen prevalence and Pseudomonas aeruginosa drug resistance, with the aim of understanding the impact of inappropriate antibacterial use. Methods This retrospective study assessed bacteria from wounds, catheters, blood, faeces, urine and sputum of hospitalized patients in burn wards between 2007 and 2014. The intensity of use of antibacterial agents and resistance of P. aeruginosa to common anti-Gram-negative antibiotics were measured. Results Annual detection rates of Staphylococcus aureus were significantly decreased, whereas annual detection rates of P. aeruginosa and Klebsiella pneumoniae were significantly increased. Multidrug-resistant strains of P. aeruginosa were increased. The intensity of use of some anti-Gramnegative antibiotics positively correlated with resistance rates of P. aeruginosa to similar antimicrobials. Conclusion In burn wards, more attention should be paid to P. aeruginosa and K. pneumoniae. The use of ciprofloxacin, ceftazidime and cefoperazone/sulbactam should be limited to counter the related increase in resistance levels.


Frontiers in Cellular and Infection Microbiology | 2016

Lipopolysaccharide Induces Human Pulmonary Micro-Vascular Endothelial Apoptosis via the YAP Signaling Pathway

Lei Yi; Xiaoqin Huang; Feng Guo; Zengding Zhou; Mengling Chang; Jiajun Tang; Jingning Huan

Gram-negative bacterial lipopolysaccharide (LPS) induces a pathologic increase in lung vascular leakage under septic conditions. LPS-induced human pulmonary micro-vascular endothelial cell (HPMEC) apoptosis launches and aggravates micro-vascular hyper-permeability and acute lung injury (ALI). Previous studies show that the activation of intrinsic apoptotic pathway is vital for LPS-induced EC apoptosis. Yes-associated protein (YAP) has been reported to positively regulate intrinsic apoptotic pathway in tumor cells apoptosis. However, the potential role of YAP protein in LPS-induced HPMEC apoptosis has not been determined. In this study, we found that LPS-induced activation and nuclear accumulation of YAP accelerated HPMECs apoptosis. LPS-induced YAP translocation from cytoplasm to nucleus by the increased phosphorylation on Y357 resulted in the interaction between YAP and transcription factor P73. Furthermore, inhibition of YAP by small interfering RNA (siRNA) not only suppressed the LPS-induced HPMEC apoptosis but also regulated P73-mediated up-regulation of BAX and down-regulation of BCL-2. Taken together, our results demonstrated that activation of the YAP/P73/(BAX and BCL-2)/caspase-3 signaling pathway played a critical role in LPS-induced HPMEC apoptosis. Inhibition of the YAP might be a potential therapeutic strategy for lung injury under sepsis.


Cellular Signalling | 2018

HBP induces the expression of monocyte chemoattractant protein-1 via the FAK/PI3K/AKT and p38 MAPK/NF-κB pathways in vascular endothelial cells

Mengling Chang; Feng Guo; Zengding Zhou; Xiaoqin Huang; Lei Yi; Yi Dou; Jingning Huan

Inflammation is characterized by early influx of polymorphonuclear neutrophils (PMNs), followed by a second wave of monocyte recruitment. PMNs mediate monocyte recruitment via their release of heparin binding protein (HBP), which activates CCR2 (CC-chemokine receptor 2) on monocytes. However, the pathways for such signal transmission remain unknown. Accumulating evidences have highlighted the importance of leukocyte-endothelial cell interactions in the initiation of inflammation. In this study, an interesting finding is that HBP enhances the secretion of monocyte chemotactic protein 1(MCP-1), ligand of CCR2, from a third party, the endothelial cells (ECs). HBP-induced increase in MCP-1 production was demonstrated at the protein, mRNA and secretion levels. Exposure of ECs to HBP elicited rapid phosphorylation of FAK/PI3K/AKT and p38 MAPK/NF-κB signaling. MCP-1 levels were attenuated during the response to HBP stimulation by pretreatment with a FAK inhibitor (or siRNA), a PI3K inhibitor, an AKT inhibitor, a p38 inhibitor (or siRNA) and two NF-κB inhibitors. Additionally, pretreatment with inhibitors to FAK, PI3K and AKT led to a decrease in HBP-induced phosphorylation of p38/NF-κB axis. These results showed that HBP induced MCP-1 expression via a sequential activation of the FAK/PI3K/AKT pathway and p38 MAPK/NF-κB axis. Interestingly, the patterns of HBP regulation of the expression of the adhesion molecular VCAM-1 were similar to those seen in MCP-1 after pretreatment with inhibitors (or not). These findings may help to determine key pharmacological points of intervention, thus slowing the progress of inflammatory-mediated responses in certain diseases where inflammation is detrimental to the host.


Platelets | 2017

Relation between dynamic changes of platelet counts and 30-day mortality in severely burned patients

Xiaoqin Huang; Feng Guo; Zengding Zhou; Mengling Chang; Fei Wang; Yi Dou; Zhiyong Wang; Jingning Huan

Abstract Thrombocytopenia is a common event in severely burned patients and associated with adverse outcome. The underlying relationship between the dynamic changes of platelet counts and mortality has not been well defined. We performed a 6-year retrospective chart of adult patients with a burn index of 50 or greater admitted to two burn centers and collected data on patient demographics, laboratory results, and patient outcomes. The mean daily increase in the platelet count (∆PC/∆t) from day 3 to day 10 was calculated, and 30-day mortality was determined. For the study, 141 survivors and 65 nonsurvivors were enrolled. The sequential changes in PCs presented a biphasic pattern after admission, with a slump to the nadir during the first 3 days and a subsequent recovery. With respect to 30-day mortality, compared with the AUC of APACHE-Ⅱ score (0.841), no significant difference was noted between ΔPC/ΔT and APACHE-Ⅱ score (p = 0.0648). The ΔPC/ΔT associated with the best discrimination between survivors and nonsurvivors was 20.57 × 109/L due to the cutoff with optimal Youden index (0.453). By multiple logistic regression, ΔPC/ΔT < 20.57 × 109/L was one of the prognostic predictors of 30-day mortality. Furthermore, Kaplan–Meier estimates of hospital survival according to the size of ΔPC/ΔT revealed that a blunted increase with ΔPC/ΔT < 20.57 × 109/L was associated with increased 30-day mortality. A blunted daily increase in PCs, especially ΔPC/ΔT < 20.57 × 109/L, is associated with increased 30-day mortality, which provides prognostic information for mortality risk assessment in severely burned patients.

Collaboration


Dive into the Zengding Zhou's collaboration.

Top Co-Authors

Avatar

Feng Guo

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Jingning Huan

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Yi Dou

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Jiajun Tang

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Lei Yi

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Xiaoqin Huang

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Mengling Chang

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Chengjin Gao

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Cailian Zhu

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Fei Song

Shanghai Jiao Tong University

View shared research outputs
Researchain Logo
Decentralizing Knowledge