Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zenglei Hu is active.

Publication


Featured researches published by Zenglei Hu.


Journal of Virology | 2013

The PA-Gene-Mediated Lethal Dissemination and Excessive Innate Immune Response Contribute to the High Virulence of H5N1 Avian Influenza Virus in Mice

Jiao Hu; Zenglei Hu; Qingqing Song; Minghong Gu; X. Liu; Xin Wang; Shunling Hu; C. Chen; Huimou Liu; Wenbo Liu; Sujuan Chen; Daxin Peng

ABSTRACT Highly pathogenic H5N1 influenza A virus remains a substantial threat to public health. To understand the molecular basis and host mechanism for the high virulence of H5N1 viruses in mammals, we compared two H5N1 isolates which have similar genetic backgrounds but greatly differ in their virulence in mice. A/Chicken/Jiangsu/k0402/2010 (CK10) is highly pathogenic, whereas A/Goose/Jiangsu/k0403/2010 (GS10) is nonpathogenic. We first showed that CK10 elicited a more potent innate immune response than did GS10 in mouse lungs by increasing the number and expression levels of activated genes. We then generated a series of reassortants between the two viruses and evaluated their virulence in mice. Inclusion of the CK10 PA gene in the GS10 background resulted in a dramatic increase in virulence. Conversely, expression of the GS10 PA gene in the CK10 background significantly attenuated the virulence. These results demonstrated that the PA gene mainly determines the pathogenicity discrepancy between CK10 and GS10 in mice. We further determined that arginine (R) at position 353 of the PA gene contributes to the high virulence of CK10 in mice. The reciprocal substitution at position 353 in PA or the exchange of the entire PA gene largely caused the transfer of viral phenotypes, including virus replication, polymerase activity, and manipulation of the innate response, between CK10 and GS10. We therefore defined a novel molecular marker associated with the high virulence of H5N1 influenza viruses, providing further insights into the pathogenesis of H5N1 viruses in mammals.


Journal of Virology | 2015

PA-X Decreases the Pathogenicity of Highly Pathogenic H5N1 Influenza A Virus in Avian Species by Inhibiting Virus Replication and Host Response

Jiao Hu; Yiqun Mo; Xiaoquan Wang; Min Gu; Zenglei Hu; Lei Zhong; Qiwen Wu; Xiaoli Hao; Shunlin Hu; Wenbo Liu; Huimou Liu; Xiaowen Liu; Xiufan Liu

ABSTRACT PA-X is a newly discovered protein that decreases the virulence of the 1918 H1N1 virus in a mouse model. However, the role of PA-X in the pathogenesis of highly pathogenic avian influenza viruses (HPAIV) of the H5N1 subtype in avian species is totally unknown. By generating two PA-X-deficient viruses and evaluating their virulence in different animal models, we show here that PA-X diminishes the virulence of the HPAIV H5N1 strain A/Chicken/Jiangsu/k0402/2010 (CK10) in mice, chickens, and ducks. Expression of PA-X dampens polymerase activity and virus replication both in vitro and in vivo. Using microarray analysis, we found that PA-X blunts the global host response in chicken lungs, markedly downregulating genes associated with the inflammatory and cell death responses. Correspondingly, a decreased cytokine response was recapitulated in multiple organs of chickens and ducks infected with the wild-type virus relative to those infected with the PA-X-deficient virus. In addition, the PA-X protein exhibits antiapoptotic activity in chicken and duck embryo fibroblasts. Thus, our results demonstrated that PA-X acts as a negative virulence regulator and decreases virulence by inhibiting viral replication and the host innate immune response. Therefore, we here define the role of PA-X in the pathogenicity of H5N1 HPAIV, furthering our understanding of the intricate pathogenesis of influenza A virus. IMPORTANCE Influenza A virus (IAV) continues to pose a huge threat to global public health. Eight gene segments of the IAV genome encode as many as 17 proteins, including 8 main viral proteins and 9 accessory proteins. The presence of these accessory proteins may further complicate the pathogenesis of IAV. PA-X is a newly identified protein in segment 3 that acts to decrease the virulence of the 1918 H1N1 virus in mice by modulating host gene expression. Our study extends these functions of PA-X to H5N1 HPAIV. We demonstrated that loss of PA-X expression increases the virulence and replication of an H5N1 virus in mice and avian species and alters the host innate immune and cell death responses. Our report is the first to delineate the role of the novel PA-X protein in the pathogenesis of H5N1 viruses in avian species and promotes our understanding of H5N1 HPAIV.


Avian Diseases | 2011

Generation of a Genotype VII Newcastle Disease Virus Vaccine Candidate with High Yield in Embryonated Chicken Eggs

Zenglei Hu; Shunlin Hu; Chun Meng; Xiaoquan Wang; Jie Zhu; Xiufan Liu

SUMMARY. To generate a genotype VII Newcastle disease virus (NDV) vaccine with high yield in embryonated chicken eggs, we selected genotype VII NDV strain JS5/05, which possesses a high virus titer in embryos as the parental virus. Using reverse genetics, we generated a genetically tagged derivative (NDV/AI4) of JS5/05 by changing the amino acid sequence of the cleavage site of the F0 protein. Pathogenicity tests showed that NDV/AI4 was completely avirulent. NDV/AI4 was genetically stable and replicated efficiently during 10 consecutive passages in embryos. More importantly, serologic assays showed that oil-emulsion NDV/AI4 induced higher hemagglutination inhibition (HI) titers against the prevalent virus than oil-emulsion LaSota vaccine in chickens and geese. Moreover, NDV/AI4-induced HI titers rose faster than those elicited by LaSota in chickens. Both NDV/AI4 and LaSota provided protection against clinical disease and mortality after the challenge with the genotype VII NDV strain JS3/05. However, NDV/AI4 significantly reduced virus shedding from the vaccinated birds compared to LaSota. Taken together, these results suggest that NDV/AI4 can provide better protection than LaSota and is a promising vaccine candidate against genotype VII NDV.


Virology Journal | 2012

Strong innate immune response and cell death in chicken splenocytes infected with genotype VIId Newcastle disease virus

Zenglei Hu; Jiao Hu; Shunling Hu; Xiaowen Liu; Xiaoquan Wang; Jie Zhu; Xiufan Liu

BackgroundGenotype VIId Newcastle disease virus (NDV) isolates induce more severe damage to lymphoid tissues, especially to the spleen, when compared to virulent viruses of other genotypes. However, the biological basis of the unusual pathological changes remains largely unknown.MethodsVirus replication, cytokine gene expression profile and cell death response in chicken splenocytes infected with two genotype VIId NDV strains (JS5/05 and JS3/05), genotype IX NDV strain F48E8 and genotype IV NDV strain Herts/33 were evaluated. Statistical significance of differences between experimental groups was determined using the Independent-Samples T test.ResultsJS5/05 and JS3/05 caused hyperinduction of type I interferons (IFNs) (IFN-α and -β) during detection period compared to F48E8 and Herts/33. JS5/05 increased expression level of IFN-γ gene at 6 h post-inoculation (pi) and JS3/05 initiated sustained activation of IFN-γ within 24 h pi, whereas transcriptional levels of IFN-γ remained unchanged at any of the time points during infection of F48E8 and Herts/33. In addition, compared to F48E8 and Herts/33, JS3/05 and JS5/05 significantly increased the amount of free nucleosomal DNA in splenocytes at 6 and 24 h pi respectively. Annexin-V and Proidium iodid (PI) double staining of infected cells showed that cell death induced by JS3/05 and JS5/05 was characterized by marked necrosis compared to F48E8 and Herts/33 at 24 h pi. These results indicate that genotype VIId NDV strains JS3/05 and JS5/05 elicited stronger innate immune and cell death responses in chicken splenocytes than F48E8 and Herts/33. JS5/05 replicated at a significantly higher efficiency in splenocytes than F48E8 and Herts/33. Early excessive cell death induced by JS3/05 infection partially impaired virus replication.ConclusionsViral dysregulaiton of host response may be relevant to the severe pathological manifestation in the spleen following genotype VIId NDV infection.


Journal of Virology | 2013

The PA and HA gene-mediated high viral load and intense innate immune response in the brain contribute to the high pathogenicity of H5N1 avian influenza virus in mallard ducks.

Jiao Hu; Zenglei Hu; Y. Mo; Qiwen Wu; Zhu Cui; Zhiqiang Duan; Junqing Huang; Hongzhi Chen; Yifang Chen; Minghong Gu; Xin Wang; Shunlin Hu; Huimou Liu; Wenbo Liu; X. Liu

ABSTRACT Most highly pathogenic avian influenza A viruses cause only mild clinical signs in ducks, serving as an important natural reservoir of influenza A viruses. However, we isolated two H5N1 viruses that are genetically similar but differ greatly in virulence in ducks. A/Chicken/Jiangsu/k0402/2010 (CK10) is highly pathogenic, whereas A/Goose/Jiangsu/k0403/2010 (GS10) is low pathogenic. To determine the genetic basis for the high virulence of CK10 in ducks, we generated a series of single-gene reassortants between CK10 and GS10 and tested their virulence in ducks. Expression of the CK10 PA or hemagglutinin (HA) gene in the GS10 context resulted in increased virulence and virus replication. Conversely, inclusion of the GS10 PA or HA gene in the CK10 background attenuated the virulence and virus replication. Moreover, the PA gene had a greater contribution. We further determined that residues 101G and 237E in the PA gene contribute to the high virulence of CK10. Mutations at these two positions produced changes in virulence, virus replication, and polymerase activity of CK10 or GS10. Position 237 plays a greater role in determining these phenotypes. Moreover, the K237E mutation in the GS10 PA gene increased PA nuclear accumulation. Mutant GS10 viruses carrying the CK10 HA gene or the PA101G or PA237E mutation induced an enhanced innate immune response. A sustained innate response was detected in the brain rather than in the lung and spleen. Our results suggest that the PA and HA gene-mediated high virus replication and the intense innate immune response in the brain contribute to the high virulence of H5N1 virus in ducks.


Archives of Virology | 2015

High levels of virus replication and an intense inflammatory response contribute to the severe pathology in lymphoid tissues caused by Newcastle disease virus genotype VIId

Zenglei Hu; Jiao Hu; Shunlin Hu; Qingqing Song; Pingyun Ding; Jie Zhu; Xiaowen Liu; Xiaoquan Wang; Xiufan Liu

Some strains of Newcastle disease virus (NDV) genotype VIId cause more-severe tissue damage in lymphoid organs compared to other virulent strains. In this study, we aim to define the mechanism of this distinct pathological manifestation of genotype VII viruses. Pathology, virus replication, and the innate immune response in lymphoid tissues of chickens infected with two genotype VIId NDV strains (JS5/05 and JS3/05), genotype IX NDV F48E8 and genotype IV NDV Herts/33, were compared. Histopathologic examination showed that JS5/05 and JS3/05 produced more-severe lesions in the spleen and thymus, but these four virulent strains caused comparable mild lesions in the bursa. In addition, JS3/05 and JS5/05 replicated at significantly higher levels in the lymphatic organs than F48E8 and Herts/33. A microarray assay performed on the spleens of chickens infected with JS5/05 or Herts/33 revealed that JS5/05 elicited a more potent inflammatory response by increasing the number and expression levels of activated genes. Moreover, cytokine gene expression profiling showed that JS5/05 and JS3/05 induced a stronger cytokine response in lymphoid tissues compared to F48E8 and Herts/33. Taken together, our results indicate that the severe pathology in immune organs caused by genotype VIId NDV strains is associated with high levels of virus replication and an intense inflammatory response.


Archives of Virology | 2014

Mutations in the FPIV motif of Newcastle disease virus matrix protein attenuate virus replication and reduce virus budding

Zhiqiang Duan; Zenglei Hu; Jie Zhu; Haixu Xu; Jian Chen; Huimou Liu; Shunlin Hu; Xiufan Liu

The FPIV-like late domains identified in the matrix (M) proteins of parainfluenza virus 5 and mumps virus have been demonstrated to be critical for virus budding. In this study, we found that the same FPIV sequence motif is present in the N-terminus of the Newcastle disease virus (NDV) M protein. Mutagenesis experiments demonstrated that mutation of either phenylalanine (F) or proline (P) to alanine led to a more obvious decrease in viral virulence and replication and resulted in poor budding of the mutant viruses. Additionally, evidence for the involvement of cellular multivesicular body (MVB) proteins was obtained, since NDV production was inhibited upon expression of dominant-negative versions of the VPS4A-E228Q protein. Together, these results demonstrate that the FPIV motif, especially the residues F and P, within the NDV M protein, plays a critical role in NDV replication and budding, and this budding process likely involves the cellular MVB pathway.


Vaccine | 2017

Newcastle disease virus (NDV) recombinant expressing the hemagglutinin of H7N9 avian influenza virus protects chickens against NDV and highly pathogenic avian influenza A (H7N9) virus challenges

Zenglei Hu; Xiaowen Liu; Xinan Jiao; Xiufan Liu

The emerged highly pathogenic avian influenza A (H7N9) (HPAI) viruses in China pose a dual challenge to public health and poultry industry. Thus H7N9 vaccines are in an urgent need. In this study, we constructed a Newcastle disease virus (NDV)-vectored vaccine (rLXHAF) expressing the hemagglutinin (HA) of H7N9 virus fused with the transmembrane/cytoplasmic tail domain of the NDV fusion protein. rLXHAF stably expressed the HA protein, exhibited similar growth kinetics and pathogenicity as the parental virus. rLXHAF induced positive NDV-specific hemagglutination inhibition (HI), virus neutralization (VN) and total IgY antibodies and completely protected chickens from NDV challenge. Unexpectedly, rLXHAF elicited undetectable HI and VN titers but high overall IgY antibody titers against H7N9 measured by ELISA. The vaccine provided 80% protection against HPAI H7N9 challenge. Virus shedding of NDV and H7N9 challenge strains was reduced. Our results suggest that rLXHAF is immunogenic and efficacious against HPAI H7N9 virus in chickens.


Frontiers in Microbiology | 2017

Generation and Comprehensive Analysis of Host Cell Interactome of the PA Protein of the Highly Pathogenic H5N1 Avian Influenza Virus in Mammalian Cells.

Zhao Gao; Jiao Hu; Yanyan Liang; Qian Yang; Kun Yan; Dong Liu; Xiaoquan Wang; Min Gu; Xiaowen Liu; Shunlin Hu; Zenglei Hu; Huimou Liu; Wenbo Liu; Sujuan Chen; Daxin Peng; Xinan Jiao; Xiufan Liu

Accumulating data have identified the important roles of PA protein in replication and pathogenicity of influenza A virus (IAV). Identification of host factors that interact with the PA protein may accelerate our understanding of IAV pathogenesis. In this study, using immunoprecipitation assay combined with liquid chromatography-tandem mass spectrometry, we identified 278 human cellular proteins that might interact with PA of H5N1 IAV. Gene Ontology annotation revealed that the identified proteins are highly associated with viral translation and replication. Further KEGG pathway analysis of the interactome profile highlighted cellular pathways associated with translation, infectious disease, and signal transduction. In addition, Diseases and Functions analysis suggested that these cellular proteins are highly related with Organismal Injury and Abnormalities and Cell Death and Survival. Moreover, two cellular proteins (nucleolin and eukaryotic translation elongation factor 1-alpha 1) identified both in this study and others were further validated to interact with PA using co-immunoprecipitation and co-localization assays. Therefore, this study presented the interactome data of H5N1 IAV PA protein in human cells which may provide novel cellular target proteins for elucidating the potential molecular functions of PA in regulating the lifecycle of IAV in human cells.


Virology Journal | 2015

The M, F and HN genes of genotype VIId Newcastle disease virus are associated with the severe pathological changes in the spleen of chickens.

Yan Kai; Zenglei Hu; Haixu Xu; Shunlin Hu; Jie Zhu; Jiao Hu; Xiaoquan Wang; Xiaowen Liu; Xiufan Liu

BackgroundThe strains of the genotype VIId Newcastle disease virus (NDV) induce more severe tissue damage in lymphoid organs than other virulent strains. The underlying molecular mechanisms are poorly understood.MethodsGenotype IV NDV Herts/33 and genotype VIId NDV JS5/05 have a distinctive pathological profile in the spleen. These two strains of viruses were selected as parental viruses to generate a panel of chimeric viruses by replacing the M, F and HN genes of Herts/33 individually or in combination with the corresponding genes of JS5/05 using reverse genetic. Virulence and in vitro characteristics of the recombinant viruses were assessed. In addition, pathological changes, virus load, and transcriptional cytokine response in the spleen of chickens infected with these recombinant viruses were also analyzed.ResultsPathogenicity test showed that all chimeric viruses are virulent. In vitro characterization revealed that gene replacement did not change growth kinetics and HN expression on cell surface of the recombinant viruses. However, replacement of the M, F and HN genes resulted in apparent changes in the fusion activity. Moreover, pathological studies revealed that only inclusion of the homologous M, F and HN genes of JS5/05 in Herts/33 backbone resulted in severe pathological changes characterized by extensive necrosis in the spleen, similar to that induced by JS5/05. In addition, this gene replacement significantly increased virus replication and the levels of transcriptional cytokine response, compared to Herts/33. Conversely, inclusion of the M, F and HN genes of Herts/33 into JS5/05 backbone resulted in Herts/33-specific pathological changes and significantly decreased virus load and the expression levels of cytokine genes, compared to JS5/05.ConclusionsThe M, F and HN genes are related to the severe pathological changes in the spleen of chickens infected with genotype VIId NDV.

Collaboration


Dive into the Zenglei Hu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Min Gu

Yangzhou University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge