Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zengping Ning is active.

Publication


Featured researches published by Zengping Ning.


Science of The Total Environment | 2012

Thallium pollution in China: A geo-environmental perspective

Tangfu Xiao; Fei Yang; Shehong Li; Baoshan Zheng; Zengping Ning

It is well known that thallium (Tl) is a non-essential and toxic metal to human health, but less is known about the geo-environmentally-induced Tl pollution and its associated health impacts. High concentrations of Tl that are primarily associated with the epithermal metallogenesis of sulfide minerals have the potential of producing Tl pollution in the environment, which has been recognized as an emerging pollutant in China. This paper aims to review the research progress in China on Tl pollution in terms of the source, mobility, transportation pathway, and health exposure of Tl and to address the environmental concerns on Tl pollution in a geo-environmental perspective. Tl associated with the epithermal metallogenesis of sulfide minerals has been documented to disperse readily and accumulate through the geo-environmental processes of soil enrichment, water transportation and food crop growth beyond a mineralized zone. The enrichments of Tl in local soil, water, and crops may result in Tl pollution and consequent adverse health effects, e.g. chronic Tl poisoning. Investigation of the baseline Tl in the geo-environment, proper land use and health-related environmental planning and regulation are critical to prevent the Tl pollution. Examination of the human urinary Tl concentration is a quick approach to identify exposure of Tl pollution to humans. The experiences of Tl pollution in China can provide important lessons for many other regions in the world with similar geo-environmental contexts because of the high mobility and toxicity of Tl.


Applied Microbiology and Biotechnology | 2015

Microbial community analysis in rice paddy soils irrigated by acid mine drainage contaminated water

Min Sun; Tangfu Xiao; Zengping Ning; Enzong Xiao; Weimin Sun

Five rice paddy soils located in southwest China were selected for geochemical and microbial community analysis. These rice fields were irrigated with river water which was contaminated by Fe–S-rich acid mine drainage. Microbial communities were characterized by high-throughput sequencing, which showed 39 different phyla/groups in these samples. Among these phyla/groups, Proteobacteria was the most abundant phylum in all samples. Chloroflexi, Acidobacteria, Nitrospirae, and Bacteroidetes exhibited higher relative abundances than other phyla. A number of rare and candidate phyla were also detected. Moreover, canonical correspondence analysis suggested that pH, sulfate, and nitrate were significant factors that shaped the microbial community structure. In addition, a wide diversity of Fe- and S-related bacteria, such as GOUTA19, Shewanella, Geobacter, Desulfobacca, Thiobacillus, Desulfobacterium, and Anaeromyxobacter, might be responsible for biogeochemical Fe and S cycles in the tested rice paddy soils. Among the dominant genera, GOUTA19 and Shewanella were seldom detected in rice paddy soils.


Ecotoxicology and Environmental Safety | 2015

Potential health risk in areas with high naturally-occurring cadmium background in southwestern China.

Yizhang Liu; Tangfu Xiao; Philippe C. Baveye; Jianming Zhu; Zengping Ning; Huajun Li

In various parts of the world, high cadmium (Cd) concentrations in environment are not related to anthropogenic contamination but have natural origins. Less is known about health risks that arise under these conditions. This study aimed to discuss the pollution of Cd with natural sources, and to investigate the concentration of Cd in food crops and the urine of inhabitants in an area of southwestern China. The results showed that the arable soils are moderately contaminated by Cd (I(geo)=1.51) relative to the local background, with a high ecological risk (Er=218). The chemical fractions of Cd in soils with natural sources are probably controlled by parent materials and mostly in residual phase. The average Cd concentrations were 0.68 mg kg(-1) (fresh weight) in local vegetables, 0.04 mg kg(-1) in rice, and 0.14 μg L(-1) in water. Leafy vegetable tends to accumulate more Cd than the other crops. The calculated Target Hazard Quotient (THQ) had a much higher value (4.33) for Cd, suggesting that Cd represents a significant potential risk to the local population. The urinary Cd concentrations (mean at 3.92 μg L(-1) for male and 4.85 μg L(-1) for female) of inhabitants in the study area were significantly higher (p<0.05) than those from the control area (mean at 0.8 μg L(-1) for male and 0.42 μg L(-1) for female). Male and female test subjects had similar urinary Cd levels (p>0.05), but age seemed to lead to an increase in Cd in the urine. These findings show that naturally-occurring Cd in local soils is taken up appreciably by local food crops, and that dietary exposure of Cd through vegetable ingestion is a major exposure pathway for local populations, and a potential risk to public health in the study area.


Science of The Total Environment | 2013

Thallium at the interface of soil and green cabbage (Brassica oleracea L. var. capitata L.): Soil-plant transfer and influencing factors

Yanlong Jia; Tangfu Xiao; Guangzhu Zhou; Zengping Ning

Thallium (Tl) is a non-essential and toxic trace metal found in many plants, but it can accumulate at particularly high concentration in green cabbage (Brassica oleracea L. var. capitata L.). The aim of this study is to explore the transfer and accumulation of Tl at the interface of rhizospheric soil and green cabbage from a long-term Tl contaminated site in southwestern Guizhou Province, China. Influencing factors such as Tl distribution in various soil fractions and physical-chemical characteristics of rhizospheric soil were also investigated. Our results demonstrated that green cabbage had high accumulation of Tl, with most bioconcentration factor (BF) values exceeding 1, and up to a maximum level of 11. The enrichment of Tl in the green cabbage tissues followed a descending order, i.e. old leaves>fresh leaves>stems≈roots. The stems functioned as a channel for Tl transportation to the leaves, where most of the Tl (greater than 80%) was found to accumulate. In the rhizospheric soils, 62-95% of Tl existed in the residual fraction, while lower concentrations of Tl (on average, 1.7% of total T1 in rhizospheric soil) were found in the water and acid soluble fractions. The major fraction of labile Tl was located in the reducible fraction (9%). Our results also suggested that the uptake and enrichment of Tl in green cabbage were affected by Tl concentrations, soil water content, soil pH, soil organic material (SOM) and cation exchange capacity (CEC) in rhizospheric soil.


Science of The Total Environment | 2016

Profiling microbial community in a watershed heavily contaminated by an active antimony (Sb) mine in Southwest China.

Weimin Sun; Enzong Xiao; Yiran Dong; Song Tang; Valdis Krumins; Zengping Ning; Min Sun; Yanlong Zhao; Shiliang Wu; Tangfu Xiao

Located in Southwest China, the Chahe watershed has been severely contaminated by upstream active antimony (Sb) mines. The extremely high concentrations of Sb make the Chahe watershed an excellent model to elucidate the response of indigenous microbial activities within a severe Sb-contaminated environment. In this study, water and surface sediments from six locations in the Chahe watershed with different levels of Sb contamination were analyzed. Illumina sequencing of 16S rRNA amplicons revealed more than 40 phyla from the domain Bacteria and 2 phyla from the domain Archaea. Sequences assigned to the genera Flavobacterium, Sulfuricurvum, Halomonas, Shewanella, Lactobacillus, Acinetobacter, and Geobacter demonstrated high relative abundances in all sequencing libraries. Spearmans rank correlations indicated that a number of microbial phylotypes were positively correlated with different speciation of Sb, suggesting potential roles of these phylotypes in microbial Sb cycling. Canonical correspondence analysis further demonstrated that geochemical parameters, including water temperature, pH, total Fe, sulfate, aqueous Sb, and Eh, significantly structured the overall microbial community in Chahe watershed samples. Our findings offer a direct and reliable reference to the diversity of microbial communities in the presence of extremely high Sb concentrations, and may have potential implications for in situ bioremediation strategies of Sb contaminated sites.


Applied and Environmental Microbiology | 2015

Diversity of the Sediment Microbial Community in the Aha Watershed (Southwest China) in Response to Acid Mine Drainage Pollution Gradients

Weimin Sun; Tangfu Xiao; Min Sun; Yiran Dong; Zengping Ning; Enzong Xiao; Song Tang; Jiwei Li

ABSTRACT Located in southwest China, the Aha watershed is continually contaminated by acid mine drainage (AMD) produced from upstream abandoned coal mines. The watershed is fed by creeks with elevated concentrations of aqueous Fe (total Fe > 1 g/liter) and SO4 2− (>6 g/liter). AMD contamination gradually decreases throughout downstream rivers and reservoirs, creating an AMD pollution gradient which has led to a suite of biogeochemical processes along the watershed. In this study, sediment samples were collected along the AMD pollution sites for geochemical and microbial community analyses. High-throughput sequencing found various bacteria associated with microbial Fe and S cycling within the watershed and AMD-impacted creek. A large proportion of Fe- and S-metabolizing bacteria were detected in this watershed. The dominant Fe- and S-metabolizing bacteria were identified as microorganisms belonging to the genera Metallibacterium, Aciditerrimonas, Halomonas, Shewanella, Ferrovum, Alicyclobacillus, and Syntrophobacter. Among them, Halomonas, Aciditerrimonas, Metallibacterium, and Shewanella have previously only rarely been detected in AMD-contaminated environments. In addition, the microbial community structures changed along the watershed with different magnitudes of AMD pollution. Moreover, the canonical correspondence analysis suggested that temperature, pH, total Fe, sulfate, and redox potentials (Eh) were significant factors that structured the microbial community compositions along the Aha watershed.


Chemosphere | 2009

High cadmium concentrations in areas with endemic fluorosis: A serious hidden toxin?

Jiang Tang; Tangfu Xiao; Shijie Wang; Jiali Lei; Maozhong Zhang; Yuanyuan Gong; Huajun Li; Zengping Ning; Libin He

Environmental contamination with cadmium (Cd) and fluorine (F) and the associated health impacts on humans have raised significant concerns in the literature, but the additional health risks created by Cd have not been investigated in areas with endemic fluorine intoxication (fluorosis). Here, we report for the first time that naturally occurring Cd in areas where endemic fluorosis is related to coal combustion is a serious hidden toxin. The high Cd levels in rocks and soils of these areas may increase health risks to epidemiological level, irrespective of fluorine levels. We implemented a pilot study in a fluorosis-affected rural area within Chinas Three Gorges region, and revealed enrichment of Cd in local bedrock (4.48-187 mgkg(-1)), coal (11.5-53.4 mgkg(-1)), and arable soils (1.01-59.7 mgkg(-1)). Cadmium was also observed to concentrate in local food crops (0.58-14.9 mgkg(-1)) and in the urine of local residents (1.7-13.4 microgL(-1)). A routine epidemiological investigation revealed that the two major Cd exposure pathways were through crop consumption and inhalation of emissions from coal combustion. Therefore, the naturally occurring Cd in areas with endemic fluorosis related to coal combustion represents a previously unrecognized toxin that must be addressed as part of efforts to control the endemic problem. The biogeochemical processes of Cd and the associated environmental effects will require additional in-depth study.


Science of The Total Environment | 2012

Culturable microbial groups and thallium-tolerant fungi in soils with high thallium contamination.

Jialong Sun; Xiao Zou; Zengping Ning; Min Sun; Jingquan Peng; Tangfu Xiao

Thallium (Tl) contamination in soil exerts a significant threat to the ecosystem health due to its high toxicity. However, little is known about the effect of Tl on the microbial community in soil. The present study aimed at characterizing the culturable microbial groups in soils which experience for a long time high Tl contamination and elevated Hg and As. The contamination originates from As, Hg and Tl sulfide mineralization and the associated mining activities in the Guizhou Province, Southwest China. Our investigation showed the existence of culturable bacteria, filamentous fungi and actinomyces in long-term Tl-contaminated soils. Some fungal groups grow in the presence of high Tl level up to 1000 mg kg⁻¹. We have isolated and identified nine Tl-tolerant fungal strains based on the morphological traits and ITS analysis. The dominant genera identified were Trichoderma, Penicillium and Paecilomyces. Preliminary data obtained in this study suggested that certain microbes were able to face high Tl pollution in soil and maintain their metabolic activities and resistances. The highly Tl-tolerant fungi that we have isolated are potentially useful in the remediation of Tl-contaminated sites.


Chemosphere | 2012

Hyperaccumulation of zinc by Corydalis davidii in Zn-polluted soils

Wenjie Lin; Tangfu Xiao; Yunying Wu; Ziqiang Ao; Zengping Ning

A field survey was conducted to identify potential Zn accumulators from an artisanal Zn smelting area in southwest Chinas Guizhou Province. Hydroponic and soil culture experiments were performed to investigate the accumulation ability of Zn in Corydalis davidii. Zn concentrations in roots, stems and leaves of C. davidii in the smelting site were 1.1-3.5, 1.2-11.2, and 3.3-14 mg g(-)(1), respectively, whereas Zn concentrations in roots, stems and leaves of C. davidii in the contaminated site impacted by the Zn smelting were 1.0-2.4, 1.9-6.5, and 3.0-1.1 mg g(-1), respectively. Zn concentrations in leaves and stems of C. davidii were observed at above 10 mg g(-1) that refers to the threshold of Zn hyperaccumulator. The concentration distribution of Zn in C. davidii was leaf>stem>root, and the Zn bioaccumulation factors of C. davidii were above 1. It is concluded that C. davidii has high tolerance to concentrate Zn stress, and that C. davidii is a newly discovered Zn-hyperaccumulator with high biomass in the aboveground parts. Based on the cultivation experiments, C. davidii could reduce Zn concentration by 26.6, 21.2, and 10.2 mg kg(-1)yr(-1) by phytoextraction from the smelting slag, Zn-contaminated soil, and background soil, respectively.


Environmental Pollution | 2017

Depth-resolved microbial community analyses in two contrasting soil cores contaminated by antimony and arsenic

Enzong Xiao; Valdis Krumins; Tangfu Xiao; Yiran Dong; Song Tang; Zengping Ning; Zhengyu Huang; Weimin Sun

Investigation of microbial communities of soils contaminated by antimony (Sb) and arsenic (As) is necessary to obtain knowledge for their bioremediation. However, little is known about the depth profiles of microbial community composition and structure in Sb and As contaminated soils. Our previous studies have suggested that historical factors (i.e., soil and sediment) play important roles in governing microbial community structure and composition. Here, we selected two different types of soil (flooded paddy soil versus dry corn field soil) with co-contamination of Sb and As to study interactions between these metalloids, geochemical parameters and the soil microbiota as well as microbial metabolism in response to Sb and As contamination. Comprehensive geochemical analyses and 16S rRNA amplicon sequencing were used to shed light on the interactions of the microbial communities with their environments. A wide diversity of taxonomical groups was present in both soil cores, and many were significantly correlated with geochemical parameters. Canonical correspondence analysis (CCA) and co-occurrence networks further elucidated the impact of geochemical parameters (including Sb and As contamination fractions and sulfate, TOC, Eh, and pH) on vertical distribution of soil microbial communities. Metagenomes predicted from the 16S data using PICRUSt included arsenic metabolism genes such as arsenate reductase (ArsC), arsenite oxidase small subunit (AoxA and AoxB), and arsenite transporter (ArsA and ACR3). In addition, predicted abundances of arsenate reductase (ArsC) and arsenite oxidase (AoxA and AoxB) genes were significantly correlated with Sb contamination fractions, These results suggest potential As biogeochemical cycling in both soil cores and potentially dynamic Sb biogeochemical cycling as well.

Collaboration


Dive into the Zengping Ning's collaboration.

Top Co-Authors

Avatar

Tangfu Xiao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Enzong Xiao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Min Sun

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Libin He

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yizhang Liu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jialong Sun

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Qingxiang Xiao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Song Tang

University of Saskatchewan

View shared research outputs
Researchain Logo
Decentralizing Knowledge