Zenobia Jacobs
University of Wollongong
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zenobia Jacobs.
Nature | 2007
Curtis W. Marean; Miryam Bar-Matthews; Jocelyn Bernatchez; Erich C. Fisher; Paul Goldberg; Andy I.R. Herries; Zenobia Jacobs; Antonieta Jerardino; Panagiotis Karkanas; Tom Minichillo; Peter J. Nilssen; Erin Thompson; Ian Watts; Hope M. Williams
Genetic and anatomical evidence suggests that Homo sapiens arose in Africa between 200 and 100 thousand years (kyr) ago, and recent evidence indicates symbolic behaviour may have appeared ∼135–75 kyr ago. From 195–130 kyr ago, the world was in a fluctuating but predominantly glacial stage (marine isotope stage MIS6); much of Africa was cooler and drier, and dated archaeological sites are rare. Here we show that by ∼164 kyr ago (±12 kyr) at Pinnacle Point (on the south coast of South Africa) humans expanded their diet to include marine resources, perhaps as a response to these harsh environmental conditions. The earliest previous evidence for human use of marine resources and coastal habitats was dated to ∼125 kyr ago. Coincident with this diet and habitat expansion is an early use and modification of pigment, probably for symbolic behaviour, as well as the production of bladelet stone tool technology, previously dated to post-70 kyr ago. Shellfish may have been crucial to the survival of these early humans as they expanded their home ranges to include coastlines and followed the shifting position of the coast when sea level fluctuated over the length of MIS6.
Science | 2008
Zenobia Jacobs; Richard G. Roberts; Rex Galbraith; H. J. Deacon; Rainer Grün; Alex Mackay; Peter Mitchell; Ralf Vogelsang; Lyn Wadley
The expansion of modern human populations in Africa 80,000 to 60,000 years ago and their initial exodus out of Africa have been tentatively linked to two phases of technological and behavioral innovation within the Middle Stone Age of southern Africa—the Still Bay and Howiesons Poort industries—that are associated with early evidence for symbols and personal ornaments. Establishing the correct sequence of events, however, has been hampered by inadequate chronologies. We report ages for nine sites from varied climatic and ecological zones across southern Africa that show that both industries were short-lived (5000 years or less), separated by about 7000 years, and coeval with genetic estimates of population expansion and exit times. Comparison with climatic records shows that these bursts of innovative behavior cannot be explained by environmental factors alone.
Science | 2009
Kyle S. Brown; Curtis W. Marean; Andy I.R. Herries; Zenobia Jacobs; Chantal Tribolo; David R. Braun; David L. Roberts; Michael C. Meyer; Jocelyn Bernatchez
Friendly Fire Hints of the use of more advanced materials by humans, including symbolic marking and jewelry, appear about 75,000 years ago or so in Africa. Brown et al. (p. 859; see the Perspective by Webb and Domanski) now show that these early modern humans were also experimenting with the use of fire for improved processing of materials. Replication experiments and analysis of artifacts suggest that humans in South Africa at this time, and perhaps earlier, systematically heated stone materials, including silcrete to improve its flaking properties in making tools. Early modern humans used fire to improve the fracturing of silcrete in making tools in South Africa 72,000 years ago. The controlled use of fire was a breakthrough adaptation in human evolution. It first provided heat and light and later allowed the physical properties of materials to be manipulated for the production of ceramics and metals. The analysis of tools at multiple sites shows that the source stone materials were systematically manipulated with fire to improve their flaking properties. Heat treatment predominates among silcrete tools at ~72 thousand years ago (ka) and appears as early as 164 ka at Pinnacle Point, on the south coast of South Africa. Heat treatment demands a sophisticated knowledge of fire and an elevated cognitive ability and appears at roughly the same time as widespread evidence for symbolic behavior.
Science | 2011
Christopher S. Henshilwood; Francesco d’Errico; Karen L. van Niekerk; Yvan Coquinot; Zenobia Jacobs; Stein-Erik Lauritzen; Michel Menu; Renata García-Moreno
Early humans mixed and stored ochre pigments in shells 100,000 years ago, an indication of the emergence of higher planning. The conceptual ability to source, combine, and store substances that enhance technology or social practices represents a benchmark in the evolution of complex human cognition. Excavations in 2008 at Blombos Cave, South Africa, revealed a processing workshop where a liquefied ochre-rich mixture was produced and stored in two Haliotis midae (abalone) shells 100,000 years ago. Ochre, bone, charcoal, grindstones, and hammerstones form a composite part of this production toolkit. The application of the mixture is unknown, but possibilities include decoration and skin protection.
Nature | 2012
Kyle S. Brown; Curtis W. Marean; Zenobia Jacobs; Benjamin J. Schoville; Simen Oestmo; Erich C. Fisher; Jocelyn Bernatchez; Panagiotis Karkanas; Thalassa Matthews
There is consensus that the modern human lineage appeared in Africa before 100,000 years ago. But there is debate as to when cultural and cognitive characteristics typical of modern humans first appeared, and the role that these had in the expansion of modern humans out of Africa. Scientists rely on symbolically specific proxies, such as artistic expression, to document the origins of complex cognition. Advanced technologies with elaborate chains of production are also proxies, as these often demand high-fidelity transmission and thus language. Some argue that advanced technologies in Africa appear and disappear and thus do not indicate complex cognition exclusive to early modern humans in Africa. The origins of composite tools and advanced projectile weapons figure prominently in modern human evolution research, and the latter have been argued to have been in the exclusive possession of modern humans. Here we describe a previously unrecognized advanced stone tool technology from Pinnacle Point Site 5–6 on the south coast of South Africa, originating approximately 71,000 years ago. This technology is dominated by the production of small bladelets (microliths) primarily from heat-treated stone. There is agreement that microlithic technology was used to create composite tool components as part of advanced projectile weapons. Microliths were common worldwide by the mid-Holocene epoch, but have a patchy pattern of first appearance that is rarely earlier than 40,000 years ago, and were thought to appear briefly between 65,000 and 60,000 years ago in South Africa and then disappear. Our research extends this record to ∼71,000 years, shows that microlithic technology originated early in South Africa, evolved over a vast time span (∼11,000 years), and was typically coupled to complex heat treatment that persisted for nearly 100,000 years. Advanced technologies in Africa were early and enduring; a small sample of excavated sites in Africa is the best explanation for any perceived ‘flickering’ pattern.
Nature | 2017
Chris Clarkson; Zenobia Jacobs; Ben Marwick; Richard Fullagar; Lynley A. Wallis; Mike Smith; Richard G. Roberts; Elspeth Hayes; Kelsey M. Lowe; Xavier Carah; S. Anna Florin; Jessica McNeil; Delyth Cox; Lee J. Arnold; Quan Hua; Jillian Huntley; Helen E. A. Brand; Tiina Manne; Andrew Fairbairn; James Shulmeister; Lindsey Lyle; Makiah Salinas; Mara Page; Kate Connell; Gayoung Park; Kasih Norman; Tessa Murphy; Colin Pardoe
The time of arrival of people in Australia is an unresolved question. It is relevant to debates about when modern humans first dispersed out of Africa and when their descendants incorporated genetic material from Neanderthals, Denisovans and possibly other hominins. Humans have also been implicated in the extinction of Australia’s megafauna. Here we report the results of new excavations conducted at Madjedbebe, a rock shelter in northern Australia. Artefacts in primary depositional context are concentrated in three dense bands, with the stratigraphic integrity of the deposit demonstrated by artefact refits and by optical dating and other analyses of the sediments. Human occupation began around 65,000 years ago, with a distinctive stone tool assemblage including grinding stones, ground ochres, reflective additives and ground-edge hatchet heads. This evidence sets a new minimum age for the arrival of humans in Australia, the dispersal of modern humans out of Africa, and the subsequent interactions of modern humans with Neanderthals and Denisovans.
Journal of African Archaeology | 2010
Ralf Vogelsang; Jürgen Richter; Zenobia Jacobs; Barbara Eichhorn; Veerle Linseele; Richard G. Roberts
This paper presents new information obtained from a recent excavation and reassessment of the stratigraphy, chronology, archaeological assemblages and environmental context of the Apollo 11 rockshelter, which contains the longest late Pleistocene and Holocene archaeological sequence in Namibia. The Middle Stone Age (MSA) industries represented at the site include an early MSA, Still Bay, Howieson’s Poort and late MSA. Optically stimulated luminescence (OSL) dating of individual quartz grains yielded numerical ages for the Still Bay and Howieson’s Poort, and indicated the presence of a post-Howieson’s Poort phase. OSL dating also verified conventional and accelerator mass spectrometry radiocarbon ages for a further two later MSA phases. The timing of the transition from the MSA to the early Later Stone Age was also investigated. Improved resolution of the excavation and a more detailed stratigraphy revealed the presence of near-sterile cultural layers, which in some cases assisted in subdividing the MSA cultural phases. Such information, in combination with the new radiocarbon and OSL chronologies, helps address questions about the duration and continuity of MSA occupation at the site. Analyses of the faunal and archaeobotanical remains show some differences between the occupation phases at the site that may be associated with changing environmental conditions.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Marie Soressi; Shannon P. McPherron; Michel Lenoir; Tamara Dogandzic; Paul Goldberg; Zenobia Jacobs; Yolaine Maigrot; Naomi Martisius; Christopher E. Miller; William Rendu; Michael P. Richards; Matthew M. Skinner; Teresa E. Steele; Sahra Talamo; Jean-Pierre Texier
Modern humans replaced Neandertals ∼40,000 y ago. Close to the time of replacement, Neandertals show behaviors similar to those of the modern humans arriving into Europe, including the use of specialized bone tools, body ornaments, and small blades. It is highly debated whether these modern behaviors developed before or as a result of contact with modern humans. Here we report the identification of a type of specialized bone tool, lissoir, previously only associated with modern humans. The microwear preserved on one of these lissoir is consistent with the use of lissoir in modern times to obtain supple, lustrous, and more impermeable hides. These tools are from a Neandertal context proceeding the replacement period and are the oldest specialized bone tools in Europe. As such, they are either a demonstration of independent invention by Neandertals or an indication that modern humans started influencing European Neandertals much earlier than previously believed. Because these finds clearly predate the oldest known age for the use of similar objects in Europe by anatomically modern humans, they could also be evidence for cultural diffusion from Neandertals to modern humans.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Chris S. M. Turney; Timothy F. Flannery; Richard G. Roberts; Craig Reid; L. Keith Fifield; Thomas Higham; Zenobia Jacobs; Noel Kemp; Eric A. Colhoun; Robert M. Kalin; Neil Ogle
Establishing the cause of past extinctions is critical if we are to understand better what might trigger future occurrences and how to prevent them. The mechanisms of continental late Pleistocene megafaunal extinction, however, are still fiercely contested. Potential factors contributing to their demise include climatic change, human impact, or some combination. On the Australian mainland, 90% of the megafauna became extinct by ≈46 thousand years (ka) ago, soon after the first archaeological evidence for human colonization of the continent. Yet, on the neighboring island of Tasmania (which was connected to the mainland when sea levels were lower), megafaunal extinction appears to have taken place before the initial human arrival between 43 and 40 ka, which would seem to exonerate people as a contributing factor in the extirpation of the island megafauna. Age estimates for the last megafauna, however, are poorly constrained. Here, we show, by direct dating of fossil remains and their associated sediments, that some Tasmanian megafauna survived until at least 41 ka (i.e., after their extinction on the Australian mainland) and thus overlapped with humans. Furthermore, a vegetation record for Tasmania spanning the last 130 ka shows that no significant regional climatic or environmental change occurred between 43 and 37 ka, when a land bridge existed between Tasmania and the mainland. Our results are consistent with a model of human-induced extinction for the Tasmanian megafauna, most probably driven by hunting, and they reaffirm the value of islands adjacent to continental landmasses as tests of competing hypotheses for late Quaternary megafaunal extinctions.
Journal of Human Evolution | 2012
Zenobia Jacobs; Richard G. Roberts; Manuel Domínguez-Rodrigo; Audax Mabulla
The archaeological deposits at Mumba rockshelter, northern Tanzania, have been excavated for more than 70 years, starting with Margit and Ludwig Köhl-Larsen in the 1930s. The assemblages of Middle Stone Age (MSA) and Later Stone Age (LSA) artefacts collected from this site constitute the type sequences for these cultural phases in East Africa. Despite its archaeological importance, however, the chronology of the site is poorly constrained, despite the application since the 1980s of several dating methods (radiocarbon, uranium-series and amino acid racemisation) to a variety of materials recovered from the deposits. Here, we review these previous chronologies for Mumba and report new ages obtained from optically stimulated luminescence (OSL) and infrared stimulated luminescence (IRSL) measurements on single grains of quartz and multi-grain aliquots of potassium (K) feldspar from the MSA and LSA deposits. Measurements of single grains of quartz allowed the rejection of unrepresentative grains and the application of appropriate statistical models to obtain the most reliable age estimates, while measurements of K-feldspars allowed the chronology to be extended to older deposits. The seven quartz ages and four K-feldspar ages provide improved temporal constraints on the archaeological sequence at Mumba. The deposits associated with the latest Kisele Industry (Bed VI-A) and the earliest Mumba Industry (Bed V) are dated to 63.4 ± 5.7 and 56.9 ± 4.8 ka (thousands of years ago), respectively, thus constraining the time of transition between these two archaeological phases to ~60 ka. An age of 49.1 ± 4.3 ka has been obtained for the latest deposits associated with the Mumba Industry, which show no evidence for post-depositional mixing and contain ostrich eggshell (OES) beads and abundant microlithics. The Nasera Industry deposits (Bed III) contain large quantities of OES beads and date to 36.8 ± 3.4 ka. We compare the luminescence ages with the previous chronologies for Mumba, and briefly discuss how the revised chronology fits in the context of existing archaeological records and palaeoclimatic reconstructions for East Africa.