Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zenon P. Czuba is active.

Publication


Featured researches published by Zenon P. Czuba.


Molecules | 2009

Ethanolic Extract of Propolis (EEP) Enhances the Apoptosis- Inducing Potential of TRAIL in Cancer Cells

Ewelina Szliszka; Zenon P. Czuba; Maciej Domino; Bogdan Mazur; Grzegorz Zydowicz; Wojciech Król

Ethanolic extract of propolis (EEP) is one of the richest sources of phenolic acids and flavonoids. EEP and its phenolic compounds have been known for various biological activities including immunopotentiation, chemopreventive and antitumor effects. Tumor necrosis factor related apoptosis inducing ligand (TRAIL) is a naturally occurring anticancer agent that preferentially induces apoptosis in cancer cells and is not toxic toward normal cells. We examined the cytotoxic and apoptotic effect of EEP and phenolic compounds identified in propolis in combination with TRAIL on HeLa cancer cells. HeLa cells were resistant to TRAIL-induced apoptosis. Our study demonstrated that EEP and its components significantly sensitize to TRAIL induced death in cancer cells. The percentage of the apoptotic cell after exposure to 50 microg/mL EEP and 100 ng/mL TRAIL increased to 71.10 +/- 1.16%. The strongest cytotoxic effect in combination with TRAIL on HeLa cells exhibited apigenin and CAPE at the concentration of 50 microM (58.87 +/- 0.75% and 49.59 +/- 0.39%, respectively). In this report, we show for the first time that EEP markedly augmented TRAIL mediated apoptosis in cancer cells and confirmed the importance of propolis in chemoprevention of malignant tumors.


International Journal of Molecular Sciences | 2009

Chalcones Enhance TRAIL-Induced Apoptosis in Prostate Cancer Cells

Ewelina Szliszka; Zenon P. Czuba; Bogdan Mazur; Lukasz Sedek; Andrzej Paradysz; Wojciech Król

Chalcones exhibit chemopreventive and antitumor effects. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a naturally occurring anticancer agent that induces apoptosis in cancer cells and is not toxic to normal cells. We examined the cytotoxic and apoptotic effect of five chalcones in combination with TRAIL on prostate cancer cells. The cytotoxicity was evaluated by the MTT and LDH assays. The apoptosis was determined using flow cytometry with annexin V-FITC. Our study showed that all five tested chalcones: chalcone, licochalcone-A, isobavachalcone, xanthohumol, butein markedly augmented TRAIL-mediated apoptosis and cytotoxicity in prostate cancer cells and confirmed the significant role of chalcones in chemoprevention of prostate cancer.


Evidence-based Complementary and Alternative Medicine | 2011

Ethanolic Extract of Propolis Augments TRAIL-Induced Apoptotic Death in Prostate Cancer Cells

Ewelina Szliszka; Zenon P. Czuba; Joanna Bronikowska; Anna Mertas; Andrzej Paradysz; Wojciech Król

Prostate cancer is a commonly diagnosed cancer in men. The ethanolic extract of propolis (EEP) and its phenolic compounds possess immunomodulatory, chemopreventive and antitumor effects. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL/APO2L) is a naturally occurring anticancer agent that preferentially induces apoptosis in cancer cells and is not toxic to normal cells. We examined the cytotoxic and apoptotic effects of EEP and phenolic compounds isolated from propolis in combination with TRAIL on two prostate cancer cell lines, hormone-sensitivity LNCaP and hormone-refractory DU145. The cytotoxicity was evaluated by MTT and LDH assays. The apoptosis was determined using flow cytometry with annexin V-FITC/propidium iodide. The prostate cancer cell lines were proved to be resistant to TRAIL-induced apoptosis. Our study demonstrated that EEP and its components significantly sensitize to TRAIL-induced death in prostate cancer cells. The percentage of the apoptotic cells after cotreatment with 50 μg mL−1 EEP and 100 ng mL−1 TRAIL increased to 74.9 ± 0.7% for LNCaP and 57.4 ± 0.7% for DU145 cells. The strongest cytotoxic effect on LNCaP cells was exhibited by apigenin, kaempferid, galangin and caffeic acid phenylethyl ester (CAPE) in combination with TRAIL (53.51 ± 0.68–66.06 ± 0.62% death cells). In this work, we showed that EEP markedly augmented TRAIL-mediated apoptosis in prostate cancer cells and suggested the significant role of propolis in chemoprevention of prostate cancer.


Molecules | 2010

Chalcones and Dihydrochalcones Augment TRAIL-Mediated Apoptosis in Prostate Cancer Cells

Ewelina Szliszka; Zenon P. Czuba; Bogdan Mazur; Andrzej Paradysz; Wojciech Król

Chalcones and dihydrochalcones exhibit chemopreventive and antitumor activity. TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) is a natural endogenous anticancer agent. We examined the cytotoxic and apoptotic effect of chalcones and dihydrochalcones on TRAIL-mediated apoptosis in LNCaP prostate cancer cells. The cytotoxicity was evaluated by the MTT and LDH assays. The apoptosis was detected using annexin V-FITC by flow cytometry and fluorescence microscopy. The ΔΨm was evaluated using DePsipher staining by fluorescence microscopy. Our study showed that two tested chalcones (chalcone and 2’,6’dihydroxy-4’-methoxychalcone) and three dihydrochalcones (2’,6’-dihydroxy-4’4-dimethoxydihydrochalcone, 2’,6’-dihydroxy-4’-methoxydihydro- chalcone, and 2’,4’,6’-trihydroxydihydrochalcone, called phloretin) markedly augmented TRAIL-induced apoptosis and cytotoxicity in LNCaP cells and confirmed the significant role of chalcones in chemoprevention of prostate cancer.


Pharmacological Reports | 2011

Enhanced TRAIL-mediated apoptosis in prostate cancer cells by the bioactive compounds neobavaisoflavone and psoralidin isolated from Psoralea corylifolia

Ewelina Szliszka; Zenon P. Czuba; Łukasz Sędek; Andrzej Paradysz; Wojciech Krol

Numerous compounds detected in medical plants and dietary components or supplements possess chemopreventive, antitumor and immunomodulatory properties. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is an important endogenous anticancer factor that induces apoptosis selectively in cancer cells. However, some tumor cells are resistant to TRAIL-mediated apoptosis. Naturally occurring agents could sensitize TRAIL-resistant cancer cells and augment their apoptotic activity.We examined the cytotoxic and apoptotic effects of neobavaisoflavone and psoralidin in combination with TRAIL on LNCaP prostate cancer cells. The cytotoxicity was evaluated by MTT and LDH assays. The apoptosis was detected using Annexin V-FITC by flow cytometry and fluorescence microscopy. The LNCaP cells were shown to be resistant to TRAIL-induced apoptosis. Our study demonstrated that neobavaisoflavone and psoralidin sensitized TRAIL-resistant cells and markedly augmented TRAIL-mediated apoptosis and cytotoxicity in prostate cancer cells. Cotreatment of LNCaP cells with 100 ng/ml TRAIL and 50 μM neobavaisoflavone or 50 μM psoralidin increased the percentage of the apoptotic cells to 77.5±0.5% or 64.4±0.5%, respectively. The data indicate the potential role of the bioactive compounds isolated from the medicinal plant Psoralea corylifolia (neobavaisoflavone and psoralidin) in prostate cancer chemoprevention through enhancement of TRAIL-mediated apoptosis.


Molecules | 2011

Inhibition of Inflammatory Mediators by Neobavaisoflavone in Activated RAW264.7 Macrophages

Ewelina Szliszka; Dariusz Skaba; Zenon P. Czuba; Wojciech Król

Flavonoids and coumarins are the major bioactive constituents identified in Psoralea corylifolia. The active fraction isolated from fruits, seeds and roots possesses antibacterial, antioxidative and immunomodulatory properties. Neobavaisoflavone is one of the flavonoids found in Psoralea corylifolia. In the present study we investigated in vitro the anti-inflammatory activity of neobavaisoflavone. Macrophages play an important role in inflammation through the release of inflammatory mediators involved in the immune response. Inappropriate and prolonged macrophage activation is largely responsible for the pathology of acute and chronic inflammatory conditions. Neobavaisoflavone significantly inhibited the production of reactive oxygen species (ROS), reactive nitrogen species (RNS) and cytokines: IL-1β, IL-6, IL-12p40, IL-12p70, TNF-α in LPS+IFN-γ– or PMA– stimulated RAW264.7 macrophages.


International Journal of Molecular Sciences | 2012

Targeting Death Receptor TRAIL-R2 by Chalcones for TRAIL-Induced Apoptosis in Cancer Cells

Ewelina Szliszka; Dagmara Jaworska; Małgorzata Ksek; Zenon P. Czuba; Wojciech Król

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis in cancer cells without toxicity to normal cells. TRAIL binds to death receptors, TRAIL-R1 (DR4) and TRAIL-R2 (DR5) expressed on cancer cell surface and activates apoptotic pathways. Endogenous TRAIL plays an important role in immune surveillance and defense against cancer cells. However, as more tumor cells are reported to be resistant to TRAIL mediated death, it is important to search for and develop new strategies to overcome this resistance. Chalcones can sensitize cancer cells to TRAIL-induced apoptosis. We examined the cytotoxic and apoptotic effects of TRAIL in combination with four chalcones: chalcone, isobavachalcone, licochalcone A and xanthohumol on HeLa cancer cells. The cytotoxicity was measured by MTT and LDH assays. The apoptosis was detected using annexin V-FITC staining by flow cytometry and fluorescence microscopy. Death receptor expression was analyzed using flow cytometry. The decreased expression of death receptors in cancer cells may be the cause of TRAIL-resistance. Chalcones enhance TRAIL-induced apoptosis in HeLa cells through increased expression of TRAIL-R2. Our study has indicated that chalcones augment the antitumor activity of TRAIL and confirm their cancer chemopreventive properties.


Folia Histochemica Et Cytobiologica | 2010

TRAIL-induced apoptosis and expression of death receptor TRAIL-R1 and TRAIL-R2 in bladder cancer cells.

Ewelina Szliszka; Bogdan Mazur; Grzegorz Zydowicz; Zenon P. Czuba; Wojciech Król

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL/Apo2L) is a member of TNF superfamily able to induce programmed death in cancer cells with no toxicity against normal tissues. TRAIL mediate apoptosis follows binding to the two death receptors, TRAIL-R1 (DR4) and/or TRAIL-R2 (DR5). In this study we investigated the cytotoxic and apoptotic effect of TRAIL on bladder cancer cells and the expression of death receptor TRAIL-R1 and TRAIL-R2 on the surface of these cancer cells. Three human bladder transitional cancer cell (TCC) lines - SW780, 647V and T24 were tested for TRAIL sensitivity. The bladder cancer cells were incubated with human soluble recombinant TRAIL. Cytotoxicity was measured by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-dimethyltetrazolium bromide) and LDH (lactate dyhydrogenase) assays. Apoptosis was detected by flow cytometry with annexin V-FITC/propidium iodide and by fluorescence microscopy with Hoechst 33342/annexin V-FITC/Ethidium Homodimer. The cell surface expression of TRAIL death receptors on bladder cancer were determined using flow cytometry with phycoerythrin-conjugated monoclonal anti-human TRAIL-R1 and TRAIL-R2. Our investigations confirmed that SW780 cells were sensitive to TRAIL, and two other bladder cancer cell lines, 647V and T24, were resistant to TRAIL induced apoptosis. We therefore examined the expression of TRAIL death receptors on bladder cancer cell surfaces. We showed decreased expression of TRAIL-R2 receptor in TRAIL-resistant bladder cancer cells and increased expression of this death receptor in TRAIL-sensitive SW780 cells. The expression of TRAILR1 receptor was similar in all bladder cancer cell lines. TRAIL is one of the promising candidates for cancer therapeutics. However, some cancer cells are resistant to TRAIL-mediated apoptosis. It is therefore important to overcome this resistance for the clinical use of TRAIL in cancer therapy. TRAIL death receptors are attractive therapeutic targets in cancer treatment. The cytotoxic agents capable of up-regulating the expression of TRAIL-R1 and TRAIL-R2 can sensitize cancer cells to TRAIL induced apoptosis.


Urologic Oncology-seminars and Original Investigations | 2013

The dietary isoflavone biochanin-A sensitizes prostate cancer cells to TRAIL-induced apoptosis

Ewelina Szliszka; Zenon P. Czuba; Anna Mertas; Andrzej Paradysz; Wojciech Krol

Biochanin-A, a major dietary isoflavone in soy and red clover, possesses anticancer and chemopreventive properties. Induction of apoptosis by naturally occurring dietary agents is an important event for cancer chemoprevention. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) triggers apoptosis selectively in cancer cells but not in normal cells. Soluble or expressed in immune cells, molecules TRAIL plays a significant role in surveillance and defense mechanisms against tumours. Prostate cancer is an ideal disease for nutritional prevention. The TRAIL-mediated apoptosis pathway in prostate cancer cells is an attractive target for chemopreventive activities of dietary agents. LNCaP and DU145 prostate cancer cells are resistant to TRAIL-induced apoptosis. We showed that biochanin-A markedly augmented TRAIL-induced cytotoxicity and apoptosis in both prostate cancer cell lines. Then, we investigated the mechanisms by which biochanin-A enhanced TRAIL-mediated apoptosis using the LNCaP cell line. The isoflavone sensitized the TRAIL-resistant LNCaP cells through the inhibition of transcription factor NF-κB(p65) activity, increased the expression of the death receptor TRAIL-R2 (DR5), and disrupted mitochondrial membrane potential (ΔΨm). Our study confirmed that biochanin-A overcame TRAIL-resistance by engaging both intrinsic and extrinsic apoptotic pathways and by regulating the NF-κB activity. The results suggested a potential role of biochanin-A in prostate cancer chemoprevention through the enhancement of TRAIL-mediated apoptosis.


Evidence-based Complementary and Alternative Medicine | 2013

Chemical Composition and Anti-Inflammatory Effect of Ethanolic Extract of Brazilian Green Propolis on Activated J774A.1 Macrophages

Ewelina Szliszka; Alicja Z. Kucharska; Anna Sokół-Łętowska; Anna Mertas; Zenon P. Czuba; Wojciech Król

The aim of this study was to investigate the chemical composition and anti-inflammatory effect of ethanolic extract of Brazilian green propolis (EEP-B) on LPS + IFN-γ or PMA stimulated J774A.1 macrophages. The identification and quantification of phenolic compounds in green propolis extract were performed using HPLC-DAD and UPLC-Q-TOF-MS methods. The cell viability was evaluated by MTT and LDH assays. The radical scavenging ability was determined using DPPH• and ABTS•+. ROS and RNS generation was analyzed by chemiluminescence. NO concentration was detected by the Griess reaction. The release of various cytokines by activated J774A.1 cells was measured in the culture supernatants using a multiplex bead array system based on xMAP technology. Artepillin C, kaempferide, and their derivatives were the main phenolics found in green propolis. At the tested concentrations, the EEP-B did not decrease the cell viability and did not cause the cytotoxicity. EEP-B exerted strong antioxidant activity and significantly inhibited the production of ROS, RNS, NO, cytokine IL-1α, IL-1β, IL-4, IL-6, IL-12p40, IL-13, TNF-α, G-CSF, GM-CSF, MCP-1, MIP-1α, MIP-1β, and RANTES in stimulated J774A.1 macrophages. Our findings provide new insights for understanding the anti-inflammatory mechanism of action of Brazilian green propolis extract and support its application in complementary and alternative medicine.

Collaboration


Dive into the Zenon P. Czuba's collaboration.

Top Co-Authors

Avatar

Wojciech Król

Medical University of Silesia

View shared research outputs
Top Co-Authors

Avatar

Ewelina Szliszka

University of Silesia in Katowice

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aleksander Sieroń

Medical University of Silesia

View shared research outputs
Top Co-Authors

Avatar

Anna Mertas

Medical University of Silesia

View shared research outputs
Top Co-Authors

Avatar

Sławomir Kasperczyk

Medical University of Silesia

View shared research outputs
Top Co-Authors

Avatar

Wojciech Latos

Medical University of Silesia

View shared research outputs
Top Co-Authors

Avatar

Joanna Bronikowska

Medical University of Silesia

View shared research outputs
Top Co-Authors

Avatar

Michał Dobrakowski

Medical University of Silesia

View shared research outputs
Top Co-Authors

Avatar

Wojciech Krol

University of Silesia in Katowice

View shared research outputs
Researchain Logo
Decentralizing Knowledge