Zeratul Izzah Mohd Yusoh
Universiti Teknikal Malaysia Melaka
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zeratul Izzah Mohd Yusoh.
congress on evolutionary computation | 2010
Zeratul Izzah Mohd Yusoh; Maolin Tang
Cloud computing is a latest new computing paradigm where applications, data and IT services are provided over the Internet. Cloud computing has become a main medium for Software as a Service (SaaS) providers to host their SaaS as it can provide the scalability a SaaS requires. The challenges in the composite SaaS placement process rely on several factors including the large size of the Cloud network, SaaS competing resource requirements, SaaS interactions between its components and SaaS interactions with its data components. However, existing applications placement methods in data centres are not concerned with the placement of the components data. In addition, a Cloud network is much larger than data center networks that have been discussed in existing studies. This paper proposes a penalty-based genetic algorithm (GA) to the composite SaaS placement problem in the Cloud. We believe this is the first attempt to the SaaS placement with its data in Cloud providers servers. Experimental results demonstrate the feasibility and the scalability of the GA.
international conference on cloud computing | 2012
Zeratul Izzah Mohd Yusoh; Maolin Tang
Software as a Service (SaaS) is gaining more and more attention from software users and providers recently. This has raised many new challenges to SaaS providers in providing better SaaSes that suit everyone needs at minimum costs. One of the emerging approaches in tackling this challenge is by delivering the SaaS as a composite SaaS. Delivering it in such an approach has a number of benefits, including flexible offering of the SaaS functions and decreased cost of subscription for users. However, this approach also introduces new problems for SaaS resource management in a Cloud data centre. We present the problem of composite SaaS resource management in Cloud data centre, specifically on its initial placement and resource optimization problems aiming at improving the SaaS performance based on its execution time as well as minimizing the resource usage. Our approach differs from existing literature because it addresses the problems resulting from composite SaaS characteristics, where we focus on the SaaS requirements, constraints and interdependencies. The problems are tackled using evolutionary algorithms. Experimental results demonstrate the efficiency and the scalability of the proposed algorithms.
congress on evolutionary computation | 2012
Zeratul Izzah Mohd Yusoh; Maolin Tang
Recently, Software as a Service (SaaS) in Cloud computing, has become more and more significant among software users and providers. To offer a SaaS with flexible functions at a low cost, SaaS providers have focused on the decomposition of the SaaS functionalities, or known as composite SaaS. This approach has introduced new challenges in SaaS resource management in data centres. One of the challenges is managing the resources allocated to the composite SaaS. Due to the dynamic environment of a Cloud data centre, resources that have been initially allocated to SaaS components may be overloaded or wasted. As such, reconfiguration for the components placement is triggered to maintain the performance of the composite SaaS. However, existing approaches often ignore the communication or dependencies between SaaS components in their implementation. In a composite SaaS, it is important to include these elements, as they will directly affect the performance of the SaaS. This paper will propose a Grouping Genetic Algorithm (GGA) for multiple composite SaaS application component clustering in Cloud computing that will address this gap. To the best of our knowledge, this is the first attempt to handle multiple composite SaaS reconfiguration placement in a dynamic Cloud environment. The experimental results demonstrate the feasibility and the scalability of the GGA.
international conference on neural information processing | 2010
Zeratul Izzah Mohd Yusoh; Maolin Tang
Cloud computing has become a main medium for Software as a Service (SaaS) hosting as it can provide the scalability a SaaS requires. One of the challenges in hosting the SaaS is the placement process where the placement has to consider SaaS interactions between its components and SaaS interactions with its data components. A previous research has tackled this problem using a classical genetic algorithm (GA) approach. This paper proposes a cooperative coevolutionary algorithm (CCEA) approach. The CCEA has been implemented and evaluated and the result has shown that the CCEA has produced higher quality solutions compared to the GA.
systems, man and cybernetics | 2012
Zeratul Izzah Mohd Yusoh; Maolin Tang
Software as a Service (SaaS) in Cloud is getting more and more significant among software users and providers recently. A SaaS that is delivered as composite application has many benefits including reduced delivery costs, flexible offers of the SaaS functions and decreased subscription cost for users. However, this approach has introduced a new problem in managing the resources allocated to the composite SaaS. The resource allocation that has been done at the initial stage may be overloaded or wasted due to the dynamic environment of a Cloud. A typical data center resource management usually triggers a placement reconfiguration for the SaaS in order to maintain its performance as well as to minimize the resource used. Existing approaches for this problem often ignore the underlying dependencies between SaaS components. In addition, the reconfiguration also has to comply with SaaS constraints in terms of its resource requirements, placement requirement as well as its SLA. To tackle the problem, this paper proposes a penalty-based Grouping Genetic Algorithm for multiple composite SaaS components clustering in Cloud. The main objective is to minimize the resource used by the SaaS by clustering its component without violating any constraint. Experimental results demonstrate the feasibility and the scalability of the proposed algorithm.
parallel problem solving from nature | 2012
Maolin Tang; Zeratul Izzah Mohd Yusoh
A composite SaaS (Software as a Service) is a software that is comprised of several software components and data components. The composite SaaS placement problem is to determine where each of the components should be deployed in a cloud computing environment such that the performance of the composite SaaS is optimal. From the computational point of view, the composite SaaS placement problem is a large-scale combinatorial optimization problem. Thus, an Iterative Cooperative Co-evolutionary Genetic Algorithm (ICCGA) was proposed. The ICCGA can find reasonable quality of solutions. However, its computation time is noticeably slow. Aiming at improving the computation time, we propose an unsynchronized Parallel Cooperative Co-evolutionary Genetic Algorithm (PCCGA) in this paper. Experimental results have shown that the PCCGA not only has quicker computation time, but also generates better quality of solutions than the ICCGA.
Archive | 2015
Siaw Hong Liew; Yun Huoy Choo; Yin Fen Low; Zeratul Izzah Mohd Yusoh; Tian Bee Yap; Azah Kamilah Muda
This chapter presents a comparison and analysis of six feature extraction methods which were often cited in the literature, namely wavelet packet decomposition (WPD), Hjorth parameter, mean, coherence, cross-correlation and mutual information for the purpose of person authentication using EEG signals. The experimental dataset consists of a selection of 5 lateral and 5 midline EEG channels extracted from the raw data published in UCI repository. The experiments were designed to assess the capability of the feature extraction methods in authenticating different users. Besides, the correlation-based feature selection (CFS) method was also proposed to identify the significant feature subset and enhance the authentication performance of the features vector. The performance measurement was based on the accuracy and area under ROC curve (AUC) values using the fuzzy-rough nearest neighbour (FRNN) classifier proposed previously in our earlier work. The results show that all the six feature extraction methods are promising. However, WPD will induce large vector set when the selected EEG channels increases. Thus, the feature selection process is important to reduce the features set before combining the significant features with the other small feature vectors set.
congress on evolutionary computation | 2014
Zeratul Izzah Mohd Yusoh; Maolin Tang
A Software-as-a-Service or SaaS can be delivered in a composite form, consisting of a set of application and data components that work together to deliver higher-level functional software. Components in a composite SaaS may need to be scaled - replicated or deleted, to accommodate the users load. It may not be necessary to replicate all components of the SaaS, as some components can be shared by other instances. On the other hand, when the load is low, some of the instances may need to be deleted to avoid resource underutilisation. Thus, it is important to determine which components are to be scaled such that the performance of the SaaS is still maintained. Extensive research on the SaaS resource management in Cloud has not yet addressed the challenges of scaling process for composite SaaS. Therefore, a hybrid genetic algorithm is proposed in which it utilises the problems knowledge and explores the best combination of scaling plan for the components. Experimental results demonstrate that the proposed algorithm outperforms existing heuristic-based solutions.
health information science | 2017
Ee Kim Hwe; Zeratul Izzah Mohd Yusoh
Datasets are very important information for analysis in any field, but the resources and availability of datasets varies widely. In the medical domain, the difference in the size of datasets can vary from millions to the tens of data. The importance is emphasised on the analysis of large scale datasets because it can provide a large overview of the situation. However, there are some cases where there are only small datasets available, due to some constraints such as high cost of collecting the data and the long hours needed to gather data. This research is to provide a clustering validation guideline on the small scale dataset for future users to verify the usability in the clustering result of small scale dataset. The domain focus is fetal cardiotocography and the small scale dataset with 4 different size will be used. These four datasets will be compared with a large scale dataset that has 2126 data. K-Means is chosen as the clustering technique as it is widely used especially in medical field. Six validation indexes are selected to validate the clustering K-Means technique for all datasets. The result will be obtained and tested in Anderson-Darling test in order to get the normality test result. The guidelines continues with a choice of statistical test either the non-parametric statistical test, Wilcoxon Signed Rank test or the parametric statistical test, Paired-Sample T-Test. Lastly, statistical test result will also be verified with a threshold value to determine the validity of a small scale dataset.
IET Biometrics | 2017
Siaw-Hong Liew; Yun-Huoy Choo; Yin Fen Low; Zeratul Izzah Mohd Yusoh
This paper proposes an Incremental Fuzzy-Rough Nearest Neighbour (IncFRNN) technique for biometric authentication modelling using feature extracted visual evoked. Only small training set is needed for model initialisation. The embedded heuristic update method adjusts the knowledge granules incrementally to maintain all representative electroencephalogram (EEG) signal patterns and eliminate those rarely used. It reshapes the personalized knowledge granules through insertion and deletion of a test object, based on similarity measures. A predefined window size can be used to reduce the overall processing time. This proposed algorithm was verified with test data from 37 healthy subjects. Signal pre-processing steps on segmentation, filtering and artefact rejection were carried out to improve the data quality before model building. The experimental paradigm was designed in three different conditions to evaluate the authentication performance of the IncFRNN technique against the benchmarked incremental K-Nearest Neighbour (KNN) technique. The performance was measured in terms of accuracy, area under the Receiver Operating Characteristic (ROC) curve (AUC) and Cohens Kappa coefficient. The proposed IncFRNN technique is proven to be statistically better than the KNN technique in the controlled window size environment. Future work will focus on the use of dynamic data features to improve the robustness of the proposed model.