Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zerong You is active.

Publication


Featured researches published by Zerong You.


Journal of Cerebral Blood Flow and Metabolism | 2008

Necrostatin-1 Reduces Histopathology and Improves Functional Outcome after Controlled Cortical Impact in Mice:

Zerong You; Sean I. Savitz; Jinsheng Yang; Alexei Degterev; Junying Yuan; Gregory D. Cuny; Michael A. Moskowitz; Michael J. Whalen

Necroptosis is a newly identified type of programmed necrosis initiated by the activation of tumor necrosis factor alpha (TNFα)/Fas. Necrostatin-1 is a specific inhibitor of necroptosis that reduces ischemic tissue damage in experimental stroke models. We previously reported decreased tissue damage and improved functional outcome after controlled cortical impact (CCI) in mice deficient in TNFα and Fas. Hence, we hypothesized that necrostatin-1 would reduce histopathology and improve functional outcome after CCI in mice. Compared with vehicle-/inactive analog-treated controls, mice administered necrostatin-1 before CCI had decreased propidium iodide-positive cells in the injured cortex and dentate gyrus (6 h), decreased brain tissue damage (days 14, 35), improved motor (days 1 to 7), and Morris water maze performance (days 8 to 14) after CCI. Improved spatial memory was observed even when drug was administered 15 mins after CCI. Necrostatin-1 treatment did not reduce caspase-3-positive cells in the dentate gyrus or cortex, consistent with a known caspase-independent mechanism of necrostatin-1. However, necrostatin-1 reduced brain neutrophil influx and microglial activation at 48 h, suggesting a novel anti-inflammatory effect in traumatic brain injury (TBI). The data suggest that necroptosis plays a significant role in the pathogenesis of cell death and functional outcome after TBI and that necrostatin-1 may have therapeutic potential for patients with TBI.


Journal of Cerebral Blood Flow and Metabolism | 2007

TNF Alpha and Fas Mediate Tissue Damage and Functional Outcome after Traumatic Brain Injury in Mice

Daniela Berrrrpohl; Zerong You; Eng H. Lo; Hyung-Hwan Kim; Michael J. Whalen

Tumor necrosis factor-alpha (TNFα) and Fas are induced after traumatic brain injury (TBI); however, their functional roles are incompletely understood. Using controlled cortical impact (CCI) and mice deficient in TNFα, Fas, or both (TNFα/Fas—/—), we hypothesized that TNFα and Fas receptor mediate secondary TBI in a redundant manner. Compared with wild type (WT), TNFα/Fas—/— mice had improved motor performance from 1 to 4 days (P < 0.05), improved spatial memory acquisition at 8 to 14 days (P < 0.05), and decreased brain lesion size at 2 and 6 weeks after CCI (P < 0.05). Protection in TNFα/Fas—/— mice from histopathological and motor deficits was reversed by reconstitution with recombinant TNFα before CCI, and TNFα—/— mice administered anti-Fas ligand antibodies had improved spatial memory acquisition versus similarly treated WT mice (P < 0.05). Tumor necrosis factor-alpha/Fas—/— mice had decreased the numbers of cortical cells with plasmalemma damage at 6h (P < 0.05 versus WT), and reduced matrix metalloproteinase-9 activity in injured brain at 48 and 72 h after CCI. In immature mice subjected to CCI, genetic inhibition of TNFα and Fas conferred beneficial effects on histopathology and spatial memory acquisition in adulthood (both P < 0.05 versus WT), suggesting that the beneficial effects of TNFα/Fas inhibition may be permanent. The data suggest that redundant signaling pathways initiated by TNFα and Fas play pivotal roles in the pathogenesis of TBI, and that biochemical mechanisms downstream of TNFα/Fas may be novel therapeutic targets to limit neurological sequelae in children and adults with severe TBI.


Journal of Cerebral Blood Flow and Metabolism | 2008

Acute plasmalemma permeability and protracted clearance of injured cells after controlled cortical impact in mice

Michael J. Whalen; Turgay Dalkara; Zerong You; Jianhua Qiu; Daniela Bermpohl; Niyati Mehta; Bernhard Suter; Pradeep G. Bhide; Eng H. Lo; Maria Ericsson; Michael A. Moskowitz

Cell death after traumatic brain injury (TBI) evolves over days to weeks. Despite advances in understanding biochemical mechanisms that contribute to posttraumatic brain cell death, the time course of cell injury, death, and removal remains incompletely characterized in experimental TBI models. In a mouse controlled cortical impact (CCI) model, plasmalemma permeability to propidium iodide (PI) was an early and persistent feature of posttraumatic cellular injury in cortex and hippocampus. In cortical and hippocampal brain regions known to be vulnerable to traumatic cell death, the number of PI + cells peaked early after CCI, and increased with increasing injury severity in hippocampus but not cortex (P < 0.05). Propidium iodide labeling correlated strongly with hematoxylin and eosin staining in injured cells (r = 0.99, P < 0.001), suggesting that plasmalemma damage portends fatal cellular injury. Using PI pulse labeling to identify and follow the fate of a cohort of injured cells, we found that many PI+ cells recovered plasmalemma integrity by 24 h and were terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end labeling negative, but nonetheless disappeared from injured brain by 7 days. Propidium iodide-positive cells in dentate gyrus showed significant ultrastructural damage, including plasmalemma and nuclear membrane damage or overt membrane loss, in all cells when examined by laser capture microdissection and transmission electron microscopy 1 to 24 h after CCI. The data suggest that plasmalemma damage is a fundamental marker of cellular injury after CCI; some injured cells might have an extended window for potential rescue by neuroprotective strategies.


Journal of Cerebral Blood Flow and Metabolism | 2006

Traumatic brain injury in mice deficient in Bid: effects on histopathology and functional outcome

Daniela Bermpohl; Zerong You; Stanley J. Korsmeyer; Michael A. Moskowitz; Michael J. Whalen

Bid is a proapoptotic member of the Bcl-2 family that mediates cell death by caspase-dependent and-independent pathways. We tested mice genetically deficient in Bid in a controlled cortical impact (CCI) model to examine the hypothesis that Bid contributes to cell death and functional outcome after traumatic brain injury. After CCI, truncated Bid (15 kDa) was robustly detected in cortical brain homogenates of wild-type mice. Bid –/– mice had decreased numbers of cortical cells with acute plasmalemma injury at 6 h (wild type (WT), 1721 ± 124; Bid –/–, 1173 ± 129 cells/ × 200 field; P < 0.01), decreased numbers of cells expressing cleaved caspase-3 in the dentate gyrus at 48 h (WT, 113 ± 15; Bid–/–, 65 ± 9 cells/ × 200 field; P < 0.05), and reduced lesion volume at 12 days (Bid –/–, 5.9 ± 0.4 mm3; WT, 8.4±0.4 mm3; P < 0.001), but did not differ from WT mice at later times after injury regarding lesion size (30 days) or brain tissue atrophy (40 days). Compared with naïve mice, injured mice in both groups performed significantly worse on motor and Morris water maze (MWM) tests; however, mice deficient in Bid did not differ from WT in postinjury motor and MWM performance. The data show that Bid deficiency decreases early posttraumatic brain cell death and tissue damage, but does not reduce functional outcome deficits after CCI in mice.


Cell Death and Disease | 2014

Akt and mTOR mediate programmed necrosis in neurons

Qiong Liu; Jianhua Qiu; Minrui Liang; Julianne M Golinski; K van Leyen; Jae-Chang Jung; Zerong You; Eng H. Lo; Alexei Degterev; Michael J. Whalen

Necroptosis is a newly described form of regulated necrosis that contributes to neuronal death in experimental models of stroke and brain trauma. Although much work has been done elucidating initiating mechanisms, signaling events governing necroptosis remain largely unexplored. Akt is known to inhibit apoptotic neuronal cell death. Mechanistic target of rapamycin (mTOR) is a downstream effector of Akt that controls protein synthesis. We previously reported that dual inhibition of Akt and mTOR reduced acute cell death and improved long term cognitive deficits after controlled-cortical impact in mice. These findings raised the possibility that Akt/mTOR might regulate necroptosis. To test this hypothesis, we induced necroptosis in the hippocampal neuronal cell line HT22 using concomitant treatment with tumor necrosis factor α (TNFα) and the pan-caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone. TNFα/zVAD treatment induced cell death within 4 h. Cell death was preceded by RIPK1–RIPK3–pAkt assembly, and phosphorylation of Thr-308 and Thr473 of AKT and its direct substrate glycogen synthase kinase-3β, as well as mTOR and its direct substrate S6 ribosomal protein (S6), suggesting activation of Akt/mTOR pathways. Pretreatment with Akt inhibitor viii and rapamycin inhibited Akt and S6 phosphorylation events, mitochondrial reactive oxygen species production, and necroptosis by over 50% without affecting RIPK1–RIPK3 complex assembly. These data were confirmed using small inhibitory ribonucleic acid-mediated knockdown of AKT1/2 and mTOR. All of the aforementioned biochemical events were inhibited by necrostatin-1, including Akt and mTOR phosphorylation, generation of oxidative stress, and RIPK1–RIPK3–pAkt complex assembly. The data suggest a novel, heretofore unexpected role for Akt and mTOR downstream of RIPK1 activation in neuronal cell death.


Journal of Cerebral Blood Flow and Metabolism | 2007

Reduced Tissue Damage and Improved Recovery of Motor Function after Traumatic Brain Injury in Mice Deficient in Complement Component C4

Zerong You; Jinsheng Yang; Kazue Takahashi; Phoebe H. Yager; Hyung-Hwan Kim; Tao Qin; Gregory L. Stahl; R. Alan B. Ezekowitz; Michael C. Carroll; Michael J. Whalen

Complement component C4 mediates C3-dependent tissue damage after systemic ischemia—reperfusion injury. Activation of C3 also contributes to the pathogenesis of experimental and human traumatic brain injury (TBI); however, few data exist regarding the specific pathways (classic, alternative, and lectin) involved. Using complement knockout mice and a controlled cortical impact (CCI) model, we tested the hypothesis that the classic pathway mediates secondary damage after TBI. After CCI, C4c and C3d immunostaining were detected in cortical vascular endothelial cells in wild-type (WT) mice; however, C4c and C3d immunostaining were also detected in C1q−1/− mice, and C3d immunostaining was detected in C4−/− mice. After CCI, WT and C1q−1/− mice had similar motor deficits, Morris water maze performance, and brain lesion size. Naive C4−/− and WT mice did not differ in baseline motor performance, but C4−/− mice had reduced postinjury motor deficits (days 1 to 7, P < 0.05) and decreased brain tissue damage (days 14 and 35, P < 0.05) versus WT. Reconstitution of C4−/− mice with human C4 (hC4) reversed their protection against postinjury motor deficits (P < 0.05 versus vehicle), but administration of hC4 did not impair postinjury motor performance (versus vehicle) in WT mice. The protective effects of C4−/− were functionally distinct from the classic pathway and terminal complement, as C1q−/− and C3−/− mice had postinjury tissue damage and motor dysfunction similar to WT. Thus, C4 contributes to motor deficits and brain tissue damage after CCI by mechanism(s) fundamentally different from those involved in experimental systemic ischemia-reperfusion injury.


PLOS ONE | 2011

Neuronal Deletion of Caspase 8 Protects against Brain Injury in Mouse Models of Controlled Cortical Impact and Kainic Acid-Induced Excitotoxicity

Maryla Krajewska; Zerong You; Juan Rong; Christina L. Kress; Xianshu Huang; Jinsheng Yang; Tiffany Kyoda; Ricardo Leyva; Steven Banares; Yue Hu; Chia-Hung Sze; Michael J. Whalen; Leonardo Salmena; Razqallah Hakem; Brian P. Head; John C. Reed; Stan Krajewski

Background Acute brain injury is an important health problem. Given the critical position of caspase 8 at the crossroads of cell death pathways, we generated a new viable mouse line (Ncasp8 −/−), in which the gene encoding caspase 8 was selectively deleted in neurons by cre-lox system. Methodology/Principal Findings Caspase 8 deletion reduced rates of neuronal cell death in primary neuronal cultures and in whole brain organotypic coronal slice cultures prepared from 4 and 8 month old mice and cultivated up to 14 days in vitro. Treatments of cultures with recombinant murine TNFα (100 ng/ml) or TRAIL (250 ng/mL) plus cyclohexamide significantly protected neurons against cell death induced by these apoptosis-inducing ligands. A protective role of caspase 8 deletion in vivo was also demonstrated using a controlled cortical impact (CCI) model of traumatic brain injury (TBI) and seizure-induced brain injury caused by kainic acid (KA). Morphometric analyses were performed using digital imaging in conjunction with image analysis algorithms. By employing virtual images of hundreds of brain sections, we were able to perform quantitative morphometry of histological and immunohistochemical staining data in an unbiased manner. In the TBI model, homozygous deletion of caspase 8 resulted in reduced lesion volumes, improved post-injury motor performance, superior learning and memory retention, decreased apoptosis, diminished proteolytic processing of caspases and caspase substrates, and less neuronal degeneration, compared to wild type, homozygous cre, and caspase 8-floxed control mice. In the KA model, Ncasp8 −/− mice demonstrated superior survival, reduced seizure severity, less apoptosis, and reduced caspase 3 processing. Uninjured aged knockout mice showed improved learning and memory, implicating a possible role for caspase 8 in cognitive decline with aging. Conclusions Neuron-specific deletion of caspase 8 reduces brain damage and improves post-traumatic functional outcomes, suggesting an important role for this caspase in pathophysiology of acute brain trauma.


Journal of Cerebral Blood Flow and Metabolism | 2008

Mannose binding lectin gene deficiency increases susceptibility to traumatic brain injury in mice

Phoebe H. Yager; Zerong You; Tao Qin; Hyung-Hwan Kim; Kazue Takahashi; Alan Ezekowitz; Gregory L. Stahl; Michael C. Carroll; Michael J. Whalen

Mannose binding lectin (MBL) initiates complement activation and exacerbates tissue damage after systemic ischemia/reperfusion. We tested the hypothesis that MBL activates complement and worsens outcome using two levels of controlled cortical impact (CCI) in mice. After moderate CCI (0.6 mm depth), MBL immunostaining was detected on injured endothelial cells of wild-type (WT) mice and C3d was detected in MBL KO (deficient in MBL A/C) and WT mice, suggesting that MBL is dispensable for terminal complement activation after CCI. Brain neutrophils, edema, blood-brain barrier permeability, gross histopathology, and motor dysfunction were similar in injured MBL KO and WT mice. In mice subjected to mild CCI (0.2 mm), MBL KO mice had almost two-fold increased acute CA3 cell degeneration at 6 h (P<0.01 versus WT). Naive MBL KO mice had decreased brain volume but performed similar to WT mice in two distinct Morris water maze (MWM) paradigms. However, injured MBL KO mice had impaired performance in cued platform trials (P<0.05 versus WT), suggesting a transient nonspatial learning deficit in injured MBL KO mice. The data suggest that MBL deficiency increases susceptibility to CCI through C3-independent mechanisms and that MBL-deficient patients may be at increased risk of poor outcome after traumatic brain injury.


The FASEB Journal | 2008

Noninvasive delivery of gene targeting probes to live brains for transcription MRI

Christina H. Liu; Zerong You; Jiaqian Ren; Young R. Kim; Katharina Eikermann-Haerter; Philip K. Liu

We aimed to test the feasibility of detecting gliosis in living brains when the blood‐brain barrier (BBB) is disrupted. We designed a novel magnetic resonance (MR) probe that contains superparamag‐netic iron oxide nanoparticles (SPION, a T2 susceptibility contrast agent) linked to a short DNA sequence complementary to the cerebral mRNA of glial fibrillary acidic protein (GFAP) found in glia and astrocytes. As a control, we also used a sequence complementary to the mRNA of β‐actin. Our objectives are to demonstrate that this new probe, SPION‐gfap, could be delivered to the brain when administered by eyedrop solution to the conjunctival sac. We induced BBB leakage by puncture wound, global cerebral ischemia, and cortical spreading depression in C57BL6 mice;1 day after probe delivery we acquired T2* MR images and R2* (R2* = 1/T2*) maps using a transcription MRI technique in live mice. We found that the SPION‐gfap probe reported foci with elevated signal in subtraction R2* maps and that these foci matched areas identified as having extensive glial network (gliosis) in postmortem immunohistochemistry. Similarly, animals adminis‐tered the control probe exhibited foci of R2* elevation that matched β‐actin‐expressing endothelia in the vascular wall. We conclude that our modular MR probe, delivered in an eyedrop solution, effectively reports gliosis associated with acute neurological disorders in living animals. As BBB leakage is often observed in acute neurological disorders, this study also served to validate noninvasive delivery of MR probes to the brains of live animals after acute neurological disorders. Liu C. H., You, Z., Ren JQ., Kim, Y. R., Eikermann‐Haerter, K., Liu P. K. Noninvasive delivery of gene targeting probes to live brains for transcription MRI. FASEB J. 22, 1193–1203 (2008)


Journal of Neurotrauma | 2010

Genetic Analysis of the Role of Tumor Necrosis Factor Receptors in Functional Outcome after Traumatic Brain Injury in Mice

Jinsheng Yang; Zerong You; Hyung-Hwan Kim; Seo-Kyoung Hwang; Jugta Khuman; Shuzhen Guo; Eng H. Lo; Michael J. Whalen

We previously reported that tumor necrosis factor-alpha (TNF-alpha) and Fas receptor induce acute cellular injury, tissue damage, and motor and cognitive deficits after controlled cortical impact (CCI) in mice (Bermpohl et al. 2007 ); however, the TNF receptors (TNFR) involved are unknown. Using a CCI model and novel mutant mice deficient in TNFR1/Fas, TNFR2/Fas, or TNFR1/TNFR2/Fas, we tested the hypothesis that the combination of TNFR2/Fas is protective, whereas TNFR1/Fas is detrimental after CCI. Uninjured knockout (KO) mice showed no differences in baseline physiological variables or motor or cognitive function. Following CCI, mice deficient in TNFR2/Fas had worse post-injury motor and Morris water maze (MWM) performance than wild-type (WT) mice (p < 0.05 group effect for wire grip score and MWM performance by repeated measures ANOVA). No differences in motor or cognitive outcome were observed in TNFR1/Fas KO, or in TNFR2 or TNFR1 single KO mice, versus WT mice. Additionally, no differences in propidium iodide (PI)-positive cells (at 6 h) or lesion size (at 14 days) were observed between WT and TNFR1/Fas or TNFR2/Fas KO mice. Somewhat surprisingly, mice deficient in TNFR1/TNFR2/Fas also had PI-positive cells, lesion size, and motor and MWM deficits similar to those of WT mice. These data suggest a protective role for TNFR2/Fas in the pathogenesis of TBI. Further studies are needed to determine whether direct or indirect effects of TNFR1 deletion in TNFR2/Fas KO mice mediate improved functional outcome in TNFR1/TNFR2/Fas KO mice after CCI.

Collaboration


Dive into the Zerong You's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge