Zeti Azura Mohamed-Hussein
National University of Malaysia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zeti Azura Mohamed-Hussein.
In Vitro Cellular & Developmental Biology – Plant | 2011
Normah Mohd Noor; Choo Wee Kean; Yap Lip Vun; Zeti Azura Mohamed-Hussein
Malaysia is fortunate and proud to contain some of the world’s richest biodiversity. In Malaysia, there are an estimated 185,000 species of fauna and 12,500 species of flowering plants, many of which are endemic to tropical forests in this region. Indeed, such diversity is an important and invaluable national asset to safeguard both present and future generations. In vitro conservation offers possible techniques for the preservation of plant germplasm that at present is difficult to maintain or is maintained with limited success. Research at the Universiti Kebangsaan Malaysia (The National University of Malaysia) focuses on the cryopreservation of woody fruit species with seeds that cannot tolerate cryopreservation (recalcitrant or intermediate). Among the plants with recalcitrant seeds are such traditionally important edible tropical fruits as mangosteen, langsat, and rambai (Garcinia mangostana, Lansium domesticum, and Baccaurea motleyana). Citrus aurantifolia, Citrus suhuiensis, Citrus madurensis, Citrus hystrix, and Fortunella polyandra are among the Citrus and Citrus-related species studied. Cryopreservation studies include the Nepenthes species (pitcher plants) of Malaysia. Fundamental research on desiccation and low-temperature tolerance and on the physiology of desiccation are used to understand seed behavior, a prerequisite for the development of successful conservation techniques. At the same time, cryopreservation protocols for several Citrus and forestry species were developed for embryonic axes and adventitious shoots, mainly using rapid dehydration and PVS2 vitrification techniques. There are no successful standard techniques or protocols for species with highly recalcitrant seeds such as Garcinia species. Modification of existing protocols or development of new methods is required, but this can be accomplished only when a detailed understanding of the recalcitrant nature of the seeds or explants is achieved. While we have considerable knowledge concerning the basics of biochemical processes and some molecular data from work on desiccation-tolerant seeds, a great need remains for understanding the cause of the recalcitrance or desiccation sensitivity of these seeds. It may be necessary to use a systems biology approach that exploits the “omics” technologies to generate global molecular data. In combination with bioinformatics for data integration and analyses, this approach would move toward improved modeling of the biological pathways associated with the development of recalcitrant seeds.
Theoretical Biology and Medical Modelling | 2009
Zeti Azura Mohamed-Hussein; Sarahani Harun
Polycystic ovary syndrome (PCOS) is a complex but frequently occurring endocrine abnormality. PCOS has become one of the leading causes of oligo-ovulatory infertility among premenopausal women. The definition of PCOS remains unclear because of the heterogeneity of this abnormality, but it is associated with insulin resistance, hyperandrogenism, obesity and dyslipidaemia. The main purpose of this study was to identify possible candidate genes involved in PCOS. Several genomic approaches, including linkage analysis and microarray analysis, have been used to look for candidate PCOS genes. To obtain a clearer view of the mechanism of PCOS, we have compiled data from microarray analyses. An extensive literature search identified seven published microarray analyses that utilized PCOS samples. These were published between the year of 2003 and 2007 and included analyses of ovary tissues as well as whole ovaries and theca cells. Although somewhat different methods were used, all the studies employed cDNA microarrays to compare the gene expression patterns of PCOS patients with those of healthy controls. These analyses identified more than a thousand genes whose expression was altered in PCOS patients. Most of the genes were found to be involved in gene and protein expression, cell signaling and metabolism. We have classified all of the 1081 identified genes as coding for either known or unknown proteins. Cytoscape 2.6.1 was used to build a network of protein and then to analyze it. This protein network consists of 504 protein nodes and 1408 interactions among those proteins. One hypothetical protein in the PCOS network was postulated to be involved in the cell cycle. BiNGO was used to identify the three main ontologies in the protein network: molecular functions, biological processes and cellular components. This gene ontology analysis identified a number of ontologies and genes likely to be involved in the complex mechanism of PCOS. These include the insulin receptor signaling pathway, steroid biosynthesis, and the regulation of gonadotropin secretion among others.
International Journal of Molecular Sciences | 2012
Nur Diyana Roslan; Jastina Mat Yusop; Syarul Nataqain Baharum; Roohaida Othman; Zeti Azura Mohamed-Hussein; Ismanizan Ismail; Normah Mohd Noor; Zamri Zainal
P. minus is an aromatic plant, the leaf of which is widely used as a food additive and in the perfume industry. The leaf also accumulates secondary metabolites that act as active ingredients such as flavonoid. Due to limited genomic and transcriptomic data, the biosynthetic pathway of flavonoids is currently unclear. Identification of candidate genes involved in the flavonoid biosynthetic pathway will significantly contribute to understanding the biosynthesis of active compounds. We have constructed a standard cDNA library from P. minus leaves, and two normalized full-length enriched cDNA libraries were constructed from stem and root organs in order to create a gene resource for the biosynthesis of secondary metabolites, especially flavonoid biosynthesis. Thus, large-scale sequencing of P. minus cDNA libraries identified 4196 expressed sequences tags (ESTs) which were deposited in dbEST in the National Center of Biotechnology Information (NCBI). From the three constructed cDNA libraries, 11 ESTs encoding seven genes were mapped to the flavonoid biosynthetic pathway. Finally, three flavonoid biosynthetic pathway-related ESTs chalcone synthase, CHS (JG745304), flavonol synthase, FLS (JG705819) and leucoanthocyanidin dioxygenase, LDOX (JG745247) were selected for further examination by quantitative RT-PCR (qRT-PCR) in different P. minus organs. Expression was detected in leaf, stem and root. Gene expression studies have been initiated in order to better understand the underlying physiological processes.
Genomics data | 2016
Kok Keong Loke; Reyhaneh Rahnamaie-Tajadod; Chean Chean Yeoh; Hoe Han Goh; Zeti Azura Mohamed-Hussein; Normah Mohd Noor; Zamri Zainal; Ismanizan Ismail
Polygonum minus plant is rich in secondary metabolites, especially terpenoids and flavonoids. Present study generates transcriptome resource for P. minus to decipher its secondary metabolite biosynthesis pathways. Raw reads and the transcriptome assembly project have been deposited at GenBank under the accessions SRX313492 (root) and SRX669305 (leaf) respectively.
computational science and engineering | 2013
Shuzlina Abdul-Rahman; Azuraliza Abu Bakar; Zeti Azura Mohamed-Hussein
This paper describes the application of swarm algorithms on bioinformatics data namely protein sequences. The big data that exists in bioinformatics domains require an intelligent method that capable to increase the performance of classification as well as discovering the knowledge. The work optimizes the big features that exist in protein sequences using the two-tier hybrid model by applying the filter and wrapper method. The use of swarm algorithm namely particle swarm optimization has improved the classification accuracy as the features are optimized prior to classification. The study also compares the performance of swarm algorithms with the standard searching method.
intelligent data analysis | 2012
Shuzlina Abdul-Rahman; Azuraliza Abu Bakar; Zeti Azura Mohamed-Hussein
Pre-processing plays a vital role in classification tasks, particularly when complex features are involved, and this demands a highly intelligent method. In bioinformatics, where datasets are categorised as having complex features, the need for pre-processing is unavoidable. In this paper, we propose a framework for selecting the discriminatory features from protein sequences prior to classification by integrating the filter and wrapper approaches. Several state-of-the-art multivariate filters were explored in the first phase to remove the unwanted features that contributed to noise, while particle swarm optimisation PSO with support vector machine SVM was adopted in the wrapper phase to produce the most optimal features. Several PSO variants were investigated in the wrapper phase to compare the most suitable PSO variants for the problem domain. The results of both phases were analysed based on classification accuracy, number of selected features, modelling time and area under the curve on the main dataset and, five benchmark machine learning datasets of similar complexity. The higher classification accuracy of the proposed framework was highly reliable with an improvement over the filter phase and the use of full features despite using smaller features.
PLOS ONE | 2015
Nor Ain Shahajar Ahmad-Sohdi; Ahmad Faris Seman-Kamarulzaman; Zeti Azura Mohamed-Hussein; Maizom Hassan
Juvenile hormones have attracted attention as safe and selective targets for the design and development of environmentally friendly and biorational insecticides. In the juvenile hormone III biosynthetic pathway, the enzyme farnesol dehydrogenase catalyzes the oxidation of farnesol to farnesal. In this study, farnesol dehydrogenase was extracted from Polygonum minus leaves and purified 204-fold to apparent homogeneity by ion-exchange chromatography using DEAE-Toyopearl, SP-Toyopearl, and Super-Q Toyopearl, followed by three successive purifications by gel filtration chromatography on a TSK-gel GS3000SW. The enzyme is a heterodimer comprised of subunits with molecular masses of 65 kDa and 70 kDa. The optimum temperature and pH were 35°C and pH 9.5, respectively. Activity was inhibited by sulfhydryl reagents, metal-chelating agents and heavy metal ions. The enzyme utilized both NAD+ and NADP+ as coenzymes with K m values of 0.74 mM and 40 mM, respectively. Trans, trans-farnesol was the preferred substrate for the P. minus farnesol dehydrogenase. Geometrical isomers of trans, trans-farnesol, cis, trans-farnesol and cis, cis-farnesol were also oxidized by the enzyme with lower activity. The K m values for trans, trans-farnesol, cis, trans-farnesol and cis, cis-farnesol appeared to be 0.17 mM, 0.33 mM and 0.42 mM, respectively. The amino acid sequences of 4 tryptic peptides of the enzyme were analyzed by MALDI-TOF/TOF-MS spectrometry, and showed no significant similarity to those of previously reported farnesol dehydrogenases. These results suggest that the purified enzyme is a novel NAD(P)+-dependent farnesol dehydrogenase. The purification and characterization established in the current study will serve as a basis to provide new information for recombinant production of the enzyme. Therefore, recombinant farnesol dehydrogenase may provide a useful molecular tool in manipulating juvenile hormone biosynthesis to generate transgenic plants for pest control.
The Scientific World Journal | 2014
Su Fang Ee; Zeti Azura Mohamed-Hussein; Roohaida Othman; Noor Azmi Shaharuddin; Ismanizan Ismail; Zamri Zainal
Polygonum minus is an aromatic plant, which contains high abundance of terpenoids, especially the sesquiterpenes C15H24. Sesquiterpenes were believed to contribute to the many useful biological properties in plants. This study aimed to functionally characterize a full length sesquiterpene synthase gene from P. minus. P. minus sesquiterpene synthase (PmSTS) has a complete open reading frame (ORF) of 1689 base pairs encoding a 562 amino acid protein. Similar to other sesquiterpene synthases, PmSTS has two large domains: the N-terminal domain and the C-terminal metal-binding domain. It also consists of three conserved motifs: the DDXXD, NSE/DTE, and RXR. A three-dimensional protein model for PmSTS built clearly distinguished the two main domains, where conserved motifs were highlighted. We also constructed a phylogenetic tree, which showed that PmSTS belongs to the angiosperm sesquiterpene synthase subfamily Tps-a. To examine the function of PmSTS, we expressed this gene in Arabidopsis thaliana. Two transgenic lines, designated as OE3 and OE7, were further characterized, both molecularly and functionally. The transgenic plants demonstrated smaller basal rosette leaves, shorter and fewer flowering stems, and fewer seeds compared to wild type plants. Gas chromatography-mass spectrometry analysis of the transgenic plants showed that PmSTS was responsible for the production of β-sesquiphellandrene.
international conference hybrid intelligent systems | 2011
Shuzlina Abdul-Rahman; Zeti Azura Mohamed-Hussein; Azuraliza Abu Bakar
Particle Swarm Optimisation (PSO) algorithm is known to be better than Genetic Algorithm (GA) as fewer operators are needed in its algorithm. However, it still has some weaknesses such as immature convergence; a condition whereby PSO tends to get trapped in a local optimum. This condition prevents them from being converged towards a better position. Various techniques have been proposed to tackle this problem by many means. This paper attempts to integrate several velocity-based reinitialisation (VBR) approaches in PSO for solving feature selection problem. Five benchmark datasets of various features dimension were used to implement the approaches. The results were analysed based on classifier performance and the selected number of features. The findings show that the proposed VBR is generally significantly better than the existing VBR approaches.
Genomics data | 2017
Nisha Govender; Siju Senan; Zeti Azura Mohamed-Hussein; Wickneswari Ratnam
Shoot and inflorescence are central physiological and developmental tissues of plants. Flowering is one of the most important agronomic traits for improvement of crop yield. To analyze the vegetative to reproductive tissue transition in Jatropha curcas, gene expression profiles were generated from shoot and inflorescence tissues. RNA isolated from both tissues was sequenced using the Ilumina HiSeq 2500 platform. Differential gene expression analysis identified key biological processes associated with vegetative to reproductive tissue transition. The present data for J. curcas may inform the design of breeding strategies particularly with respect to reproductive tissue transition. The raw data of this study has been deposited in the NCBIs Sequence Read Archive (SRA) database with the accession number SRP090662.