Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zev Bryant is active.

Publication


Featured researches published by Zev Bryant.


Nature | 2003

Ten years of tension: single-molecule DNA mechanics

Carlos Bustamante; Zev Bryant; Steven B. Smith

The basic features of DNA were elucidated during the half-century following the discovery of the double helix. But it is only during the past decade that researchers have been able to manipulate single molecules of DNA to make direct measurements of its mechanical properties. These studies have illuminated the nature of interactions between DNA and proteins, the constraints within which the cellular machinery operates, and the forces created by DNA-dependent motors.


Nature | 2003

Structural transitions and elasticity from torque measurements on DNA

Zev Bryant; Michael D. Stone; Jeff Gore; Steven B. Smith; Nicholas R. Cozzarelli; Carlos Bustamante

Knowledge of the elastic properties of DNA is required to understand the structural dynamics of cellular processes such as replication and transcription. Measurements of force and extension on single molecules of DNA have allowed direct determination of the molecules mechanical properties, provided rigorous tests of theories of polymer elasticity, revealed unforeseen structural transitions induced by mechanical stresses, and established an experimental and conceptual framework for mechanical assays of enzymes that act on DNA. However, a complete description of DNA mechanics must also consider the effects of torque, a quantity that has hitherto not been directly measured in micromanipulation experiments. We have measured torque as a function of twist for stretched DNA—torsional strain in over- or underwound molecules was used to power the rotation of submicrometre beads serving as calibrated loads. Here we report tests of the linearity of DNAs twist elasticity, direct measurements of the torsional modulus (finding a value ∼40% higher than generally accepted), characterization of torque-induced structural transitions, and the establishment of a framework for future assays of torque and twist generation by DNA-dependent enzymes. We also show that cooperative structural transitions in DNA can be exploited to construct constant-torque wind-up motors and force–torque converters.


Nature | 2006

DNA overwinds when stretched.

Jeff Gore; Zev Bryant; Mai U. Le; Nicholas R. Cozzarelli; Carlos Bustamante

DNA is often modelled as an isotropic rod, but its chiral structure suggests the possible importance of anisotropic mechanical properties, including coupling between twisting and stretching degrees of freedom. Simple physical intuition predicts that DNA should unwind under tension, as it is pulled towards a denatured structure. We used rotor bead tracking to directly measure twist–stretch coupling in single DNA molecules. Here we show that for small distortions, contrary to intuition, DNA overwinds under tension, reaching a maximum twist at a tension of ∼30 pN. As tension is increased above this critical value, the DNA begins to unwind. The observed twist–stretch coupling predicts that DNA should also lengthen when overwound under constant tension, an effect that we quantitatively confirm. We present a simple model that explains these unusual mechanical properties, and also suggests a possible origin for the anomalously large torsional rigidity of DNA. Our results have implications for the action of DNA-binding proteins that must stretch and twist DNA to compensate for variability in the lengths of their binding sites. The requisite coupled DNA distortions are favoured by the intrinsic mechanical properties of the double helix reported here.


Nature | 2006

Mechanochemical analysis of DNA gyrase using rotor bead tracking

Jeff Gore; Zev Bryant; Michael D. Stone; Nicholas R. Cozzarelli; Carlos Bustamante

DNA gyrase is a molecular machine that uses the energy of ATP hydrolysis to introduce essential negative supercoils into DNA. The directionality of supercoiling is ensured by chiral wrapping of the DNA around a specialized domain of the enzyme before strand passage. Here we observe the activity of gyrase in real time by tracking the rotation of a submicrometre bead attached to the side of a stretched DNA molecule. In the presence of gyrase and ATP, we observe bursts of rotation corresponding to the processive, stepwise introduction of negative supercoils in strict multiples of two. Changes in DNA tension have no detectable effect on supercoiling velocity, but the enzyme becomes markedly less processive as tension is increased over a range of only a few tenths of piconewtons. This behaviour is quantitatively explained by a simple mechanochemical model in which processivity depends on a kinetic competition between dissociation and rapid, tension-sensitive DNA wrapping. In a high-resolution variant of our assay, we directly detect rotational pauses corresponding to two kinetic substeps: an ATP-independent step at the end of the reaction cycle, and an ATP-binding step in the middle of the cycle, subsequent to DNA wrapping.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Chirality sensing by Escherichia coli topoisomerase IV and the mechanism of type II topoisomerases.

Michael D. Stone; Zev Bryant; Nancy J. Crisona; Steven B. Smith; Alexander Vologodskii; Carlos Bustamante; Nicholas R. Cozzarelli

Escherichia coli topoisomerase (Topo) IV is an essential type II Topo that removes DNA entanglements created during DNA replication. Topo IV relaxes (+) supercoils much faster than (–) supercoils, promoting replication while sparing the essential (–) supercoils. Here, we investigate the mechanism underlying this chiral preference. Using DNA binding assays and a single-molecule DNA braiding system, we show that Topo IV recognizes the chiral crossings imposed by the left-handed superhelix of a (+) supercoiled DNA, rather than global topology, twist deformation, or local writhe. Monte Carlo simulations of braid, supercoil, and catenane configurations demonstrate how a preference for a single-crossing geometry during strand passage can allow Topo IV to perform its physiological functions. Single-enzyme braid relaxation experiments also provide a direct measure of the processivity of the enzyme and offer insight into its mechanochemical cycle.


Proceedings of the National Academy of Sciences of the United States of America | 2007

The power stroke of myosin VI and the basis of reverse directionality

Zev Bryant; David G. Altman; James A. Spudich

Myosin VI supports movement toward the (−) end of actin filaments, despite sharing extensive sequence and structural homology with (+)-end-directed myosins. A class-specific stretch of amino acids inserted between the converter domain and the lever arm was proposed to provide the structural basis of directionality reversal. Indeed, the unique insert mediates a 120° redirection of the lever arm in a crystal structure of the presumed poststroke conformation of myosin VI [Ménétrey J, Bahloul A, Wells AL, Yengo CM, Morris CA, Sweeney HL, Houdusse A (2005) Nature 435:779–785]. However, this redirection alone is insufficient to account for the large (−)-end-directed stroke of a monomeric myosin VI construct. The underlying motion of the myosin VI converter domain must therefore differ substantially from the power stroke of (+)-end-directed myosins. To experimentally map out the motion of the converter domain and lever arm, we have generated a series of truncated myosin VI constructs and characterized the size and direction of the power stroke for each construct using dual-labeled gliding filament assays and optical trapping. Motors truncated near the end of the converter domain generate (+)-end-directed motion, whereas longer constructs move toward the (−) end. Our results directly demonstrate that the unique insert is required for directionality reversal, ruling out a large class of models in which the converter domain moves toward the (−) end. We suggest that the lever arm rotates ≈180° between pre- and poststroke conformations.


Biophysical Journal | 2000

Mechanical Unfolding of a β-Hairpin Using Molecular Dynamics

Zev Bryant; Vijay S. Pande; Daniel S. Rokhsar

Single-molecule mechanical unfolding experiments have the potential to provide insights into the details of protein folding pathways. To investigate the relationship between force-extension unfolding curves and microscopic events, we performed molecular dynamics simulations of the mechanical unfolding of the C-terminal hairpin of protein G. We have studied the dependence of the unfolding pathway on pulling speed, cantilever stiffness, and attachment points. Under conditions that generate low forces, the unfolding trajectory mimics the untethered, thermally accessible pathway previously proposed based on high-temperature studies. In this stepwise pathway, complete breakdown of backbone hydrogen bonds precedes dissociation of the hydrophobic cluster. Under more extreme conditions, the cluster and hydrogen bonds break simultaneously. Transitions between folding intermediates can be identified in our simulations as features of the calculated force-extension curves.


Current Opinion in Structural Biology | 2012

Recent developments in single-molecule DNA mechanics

Zev Bryant; Florian C. Oberstrass; Aakash Basu

Over the past two decades, measurements on individual stretched and twisted DNA molecules have helped define the basic elastic properties of the double helix and enabled real-time functional assays of DNA-associated molecular machines. Recently, new magnetic tweezers approaches for simultaneously measuring freely fluctuating twist and extension have begun to shed light on the structural dynamics of large nucleoprotein complexes. Related technical advances have facilitated direct measurements of DNA torque, contributing to a better understanding of abrupt structural transitions in mechanically stressed DNA. The new measurements have also been exploited in studies that hint at a developing synergistic relationship between single-molecule manipulation and structural DNA nanotechnology.


Nature Nanotechnology | 2012

Engineering controllable bidirectional molecular motors based on myosin

Lu Chen; Muneaki Nakamura; Tony D. Schindler; David Parker; Zev Bryant

Cytoskeletal motors drive the transport of organelles and molecular cargoes within cells1, and have potential applications in molecular detection and diagnostic devices2,3. Engineering molecular motors with dynamically controllable properties will allow selective perturbation of mechanical processes in living cells, and yield optimized device components for complex tasks such as molecular sorting and directed assembly3. Biological motors have previously been modified by introducing activation/deactivation switches that respond to metal ions4,5 and other signals6. Here we show that myosin motors can be engineered to reversibly change their direction of motion in response to a calcium signal. Building on previous protein engineering studies7–11 and guided by a structural model12 for the redirected power stroke of myosin VI, we constructed bidirectional myosins through the rigid recombination of structural modules. The performance of the motors was confirmed using gliding filament assays and single fluorophore tracking. Our general strategy, in which external signals trigger changes in the geometry and mechanics of myosin lever arms, should enable spatiotemporal control over a range of motor properties including processivity, stride size13, and branchpoint turning14.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Torque measurements reveal sequence-specific cooperative transitions in supercoiled DNA

Florian C. Oberstrass; Louis E. Fernandes; Zev Bryant

B-DNA becomes unstable under superhelical stress and is able to adopt a wide range of alternative conformations including strand-separated DNA and Z-DNA. Localized sequence-dependent structural transitions are important for the regulation of biological processes such as DNA replication and transcription. To directly probe the effect of sequence on structural transitions driven by torque, we have measured the torsional response of a panel of DNA sequences using single molecule assays that employ nanosphere rotational probes to achieve high torque resolution. The responses of Z-forming d(pGpC)n sequences match our predictions based on a theoretical treatment of cooperative transitions in helical polymers. “Bubble” templates containing 50–100 bp mismatch regions show cooperative structural transitions similar to B-DNA, although less torque is required to disrupt strand–strand interactions. Our mechanical measurements, including direct characterization of the torsional rigidity of strand-separated DNA, establish a framework for quantitative predictions of the complex torsional response of arbitrary sequences in their biological context.

Collaboration


Dive into the Zev Bryant's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeff Gore

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Laura Y. Kim

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge