Zexun Wei
State Oceanic Administration
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zexun Wei.
Journal of Geophysical Research | 2004
Guohong Fang; Yonggang Wang; Zexun Wei; Byung Ho Choi; Xinyi Wang; Ji Wang
[1] Harmonic analysis of 10 years of TOPEX/Poseidon (TP) along-track altimetry is performed to derive the semidiurnal, diurnal, long-period, and quarter-diurnal tides in the Bohai, Yellow, and East China Seas. The TP solutions are evaluated through intercomparison for crossover points and comparison with the ground truth, showing that the accuracy of TP solutions in the study area has achieved levels of 2 - 4 cm in amplitudes and 5degrees in phase lags for principal constituents (M-2, S-2, K-1, O-1, and S-a). The TP-derived S-a amplitudes have a systematic bias of about - 10% as compared with the ground truth, indicating the possible importance of loading effect of this constituent in the study area, which is generally not considered in geodetic surveys. The tidal harmonics from TP altimetry and at coastal and island stations are used to give a new set of empirical cotidal charts for principal constituents (M-2, S-2, K-1, O-1, and S-a). The accuracy of these new charts is believed to be significantly higher than the previous charts for the offshore area.
Acta Oceanologica Sinica | 2013
R. Dwi Susanto; Zexun Wei; Rameyo T. Adi; Bin Fan; Shujiang Li; Guohong Fang
In order to quantitatively estimate the volume and property transports between the South China Sea and Indonesian Seas via the Karimata Strait, two trawl-resistant bottom mounts, with ADCPs embedded, were deployed in the strait to measure the velocity profile as part of the South China Sea-Indonesian Seas transport/exchange (SITE) program. A pair of surface and bottom acoustic modems was employed to transfer the measured velocity without recovering the mooring. The advantage and problems of the instruments in this field work are reported and discussed. The field observations confirm the existence of the South China Sea branch of Indonesian throughflow via the Karimata Strait with a stronger southward flow in boreal winter and weaker southward bottom flow in boreal summer, beneath the upper layer northward (reversal) flow. The estimate of the averaged volume, heat and freshwater transports from December 2007 to March 2008 (winter) is (−2.7±1.1)×106 m3/s, (−0.30±0.11) PW, (−0.18±0.07)×106 m3/s and from May to September 2008 (summer) is (1.2±0.6)×106 m3/s, (0.14±0.03) PW, (0.12±0.04)×106 m3/s and for the entire record from December 2007 to October 2008 is (−0.5±1.9)×106 m3/s, (−0.05±0.22) PW, (−0.01±0.15)×106 m3/s (negative/positive represents southward/northward transport), respectively. The existence of southward bottom flow in boreal summer implies that the downward sea surface slope from north to south as found by Fang et al. (2010) for winter is a year-round phenomenon.
Acta Oceanologica Sinica | 2017
Yaohua Zhu; Junchuan Sun; Zexun Wei; Yonggang Wang; Guohong Fang; Tangdong Qu
On the basis of the latest version of a U.S. Navy generalized digital environment model (GDEM-V3.0) and World Ocean Atlas (WOA13), the hydraulic theory is revisited and applied to the Luzon Strait, providing a fresh look at the deepwater overflow there. The result reveals that: (1) the persistent density difference between two sides of the Luzon Strait sustains an all year round deepwater overflow from the western Pacific to the South China Sea (SCS); (2) the seasonal variability of the deepwater overflow is influenced not only by changes in the density difference between two sides of the Luzon Strait, but also by changes in its upstream layer thickness; (3) the deepwater overflow in the Luzon Strait shows a weak semiannual variability; (4) the seasonal mean circulation pattern in the SCS deep basin does not synchronously respond to the seasonality of the deepwater overflow in the Luzon Strait. Moreover, the deepwater overflow reaches its seasonal maximum in December (based on GDEM-V3.0) or in fall (October–December, based on the WOA13), accompanied by the lowest temperature of the year on the Pacific side of the Luzon Strait. The seasonal variability of the deepwater overflow is consistent with the existing longest (3.5 a) continuous observation along the major deepwater passage of the Luzon Strait.
Acta Oceanologica Sinica | 2016
Zexun Wei; Guohong Fang; Tengfei Xu; Yonggang Wang; Zhan Lian
In this study, we develop a variable-grid global ocean general circulation model (OGCM) with a fine grid (1/6)° covering the area from 20°S–50°N and from 99°–150°E, and use the model to investigate the isopycnal surface circulation in the South China Sea (SCS). The simulated results show four layer structures in vertical: the surface and subsurface circulation of the SCS are characterized by the monsoon driven circulation, with basin-scaled cyclonic gyre in winter and anti-cyclonic gyre in summer. The intermediate layer circulation is opposite to the upper layer, showing anti-cyclonic gyre in winter but cyclonic gyre in summer. The circulation in the deep layer is much weaker in spring and summer, with the maximum velocity speed below 0.6 cm/s. In fall and winter, the SCS deep layer circulation shows strong east boundary current along the west coast of Philippine with the velocity speed at 1.5 m/s, which flows southward in fall and northward in winter. The results have also revealed a fourlayer vertical structure of water exchange through the Luzon Strait. The dynamics of the intermediate and deep circulation are attributed to the monsoon driving and the Luzon Strait transport forcing.
Acta Oceanologica Sinica | 2012
Yihang Wang; Guohong Fang; Zexun Wei; Yonggang Wang; Xinyi Wang; Xiaoqing Xu
The global distributions of eight principal tidal constituents, M2, S2, K1, O1, N2, K2, P1, and Q1, are derived using TOPEX/Poseidon and JASON-1(T/P-J) satellite altimeter data for 16 a. The intercomparison of the derived harmonics at 7000 subsatellite track crossover points shows that the root mean square (RMS) values of the tidal height differences of the above eight constituents range from 1.19 cm to 2.67 cm, with an average of about 2 cm. The RMS values of the tidal height differences between T/P-J solutions and the harmonics from ground measurements at 152 tidal gauge stations for the above constituents range from 0.34 cm to 1.08 cm, and the relative deviations range from 0.031 to 0.211. The root sum square of the RMS differences of these eight constituents is 2.12 cm, showing the improvement of the present model over the existing global ocean tidal models. Based on the obtained tidal model the global ocean tidal energetics is studied and the global distribution of the tidal power input density by tide-generating force of each constituent is calculated, showing that the power input source regions of semidiurnal tides are mainly concentrated in the tropical belt between 30°S and 30°N, while the power input source regions of diurnal tides are mainly concentrated off the tropic oceans. The global energy dissipation rates of the M2, S2, K1, O1, N2, P1, K2 and Q1 tides are 2.424, 0.401, 0.334, 0.160, 0.113, 0.035, 0.030 and 0.006 TW, respectively. The total global tidal dissipation rate of these eight constituents amounts to 3.5 TW.
Acta Oceanologica Sinica | 2016
Ke Sun; Zhongfeng Qiu; Yijun He; Wei Fan; Zexun Wei
In the East China Sea (ECS), the succession of causative species responsible for blooms is a recurrent phenomenon during the spring, which changes from diatoms to dinoflagellates. Observations from space and in situ cruises captured this pattern of succession during spring of 2005. In this study, we coupled two biological models, which were developed previously for Skeletonema costatum and Prorocentrum donghaiense, into a circulation model tailored for the ECS. The coupled biophysical model was used to hindcast the blooms and to test the hypothesis proposed in earlier studies that phosphate (PO43–) is the first-order decider of the succession. The coupled model successfully reproduced the hydrodynamics (as described in a companion paper by Sun et al.①, the spatiotemporal distribution of the chlorophyll a (Chl a) concentration, and the species succession reasonably well. By analyzing the effects of different factors on the surface Chl a distribution, we confirmed that the offshore boundaries of the blooms were confined by PO43–. In addition, we suggest that surface wind fields may modulate the horizontal distribution of blooms. Thus, during the dispersal of blooms, surface winds coupled with PO43– may control the succession of blooms in the ECS. The proposed coupled model provides a benchmark to facilitate future improvements by including more size classes for organisms, multiple nutrient schemes, and additional processes.
Acta Oceanologica Sinica | 2017
Ke Sun; Zhongfeng Qiu; Yijun He; Wei Fan; Zexun Wei
Algal blooms caused by Prorocentrum donghaiense occurred frequently in the East China Sea (ECS) during spring in recent years. In this study, a coupled biophysical model was used to hindcast a massive P. donghaiense bloom that occurred in 2005 and to determine the factors influencing bloom initiation and development. The model comprised the Regional Ocean Modeling System tailored for the ECS that utilized a multi-nested configuration and a population dynamics model for P. donghaiense. Comparisons between simulations and observations revealed that the biological model is capable of reproducing the characteristics of P. donghaiense growth under different irradiances and phosphorus limitation scenarios. The variation of intracellular phosphorus and the effects of P. donghaiense on ambient nutrients conditions were also reproduced. The biophysical model hindcasted the hydrodynamics and spatiotemporal distributions of the P. donghaiense bloom reasonably well. Bloom development was consistent with observations reported in earlier studies. The results demonstrate the capability of the model in capturing subsurface incubation during bloom initiation. Then model’s hindcast solutions were further used to diagnose the factors controlling the vertical distribution. Phosphate appeared to be one of the factors controlling the subsurface incubation, whereas surface wind fields played an important role in determining P. donghaiense distribution. The results highlight the importance of nutrient-limitation as a mechanism in the formation of P. donghaiense subsurface layers and the dispersing of P. donghaiense blooms. This coupled biophysical model should be improved and used to investigate P. donghaiense blooms occurring in different scenarios.
Acta Oceanologica Sinica | 2015
Yan He; Jinping Zhao; Na Liu; Zexun Wei; Yahao Liu; Xiang Li
Deep water in the Nordic seas is the major source of Atlantic deep water and its formation and transport play an important role in the heat and mass exchange between polar and the North Atlantic. A monthly hydrological climatology—Hydrobase II—is used to estimate the deep ocean circulation pattern and the deep water distribution in the Nordic seas. An improved P-vector method is applied in the geostrophic current calculation which introduces sea surface height gradient to solve the issue that a residual barotropic flow cannot be recognized by traditional method in regions where motionless level does not exist. The volume proportions, spatial distributions and seasonal variations of major water masses are examined and a comparison with other hydrological dataset is carried out. The variations and transports of deep water are investigated based on estimated circulation and water mass distributions. The seasonal variation of deep water volume in the Greenland Basin is around 22×103 km3 whereas significantly weaker in the Lofoten and Norwegian Basins. Annual downstream transports of about 1.54×103 and 0.64×103 km3 are reported between the Greenland/Lofoten and Lofoten/Norwegian Basins. The deep water transport among major basins is generally in the Greenland-Lofoten-Norwegian direction.
Acta Oceanologica Sinica | 2015
Yunxia Zhao; Zexun Wei; Yonggang Wang; Tengfei Xu; Ying Feng
Based on monthly mean Simple Ocean Data Assimilation (SODA) products from 1958 to 2007, this study analyzes the seasonal and interannual variability of the North Equatorial Current (NEC) bifurcation latitude and the Indonesian Throughflow (ITF) volume transport. Further, Empirical Mode Decomposition (EMD) method and lag-correlation analysis are employed to reveal the relationships between the NEC bifurcation location, NEC and ITF volume transport and ENSO events. The analysis results of the seasonal variability show that the annual mean location of NEC bifurcation in upper layer occurs at 14.33°N and ITF volume transport has a maximum value in summer, a minimum value in winter and an annual mean transport of 7.75×106 m3/s. The interannual variability analysis indicates that the variability of NEC bifurcation location can be treated as a precursor of El Niño. The correlation coefficient between the two reaches the maximum of 0.53 with a time lag of 2 months. The ITF volume transport is positively related with El Niño events with a maximum coefficient of 0.60 by 3 months. The NEC bifurcation location is positively correlated with the ITF volume transport with a correlation coefficient of 0.43.
Acta Oceanologica Sinica | 2014
Yaohua Zhu; Zexun Wei; Guohong Fang; Yonggang Wang; Yuping Guan
A global prognostic model based on MOM4p1, which is a primitive equation nonBoussinesq numerical model, has been integrated with 1 400 years from the state of rest based on the realistic topography to study the long-term pattern of combined wind-driven and thermodynamically-driven general circulation. The model is driven by monthly climatological mean forces and includes 192×189 horizontal grids and 31 pressure-based vertical levels. The main objective is to investigate the mass and heat transports at inter-basin passages and their compensations and roles in the global ocean circulation under equilibrium state of long-term spin up. The kinetic energy analysis divides the spin up process into three stages: the quasi-stable state of wind driven current, the growing phase of thermodynamical circulation and the equilibrium state of thermohaline circulation. It is essential to spin up over a thousand years in order to reach the thermohaline equilibrium state from a state of rest. The Arctic Throughflow from the Bering Strait to the Greenland Sea and the Indonesian Throughflow (ITF) are captured and examined with their compensations and existing data. Analysis reveals that the slope structures of sea surface height are the dynamical driving mechanism of the Pacific-Arctic-Atlantic throughflow and ITF. The analysis denotes, in spite of O (1.4×106 m3/s) of the southward volume transport in the northern Atlantic, that there is still O (1 PW) of heat transported northward since the northward currents in the upper layer carrymuch higher temperature water than the southward flowing northern Atlantic deep water (NADW). Meridional volume and heat transports are focused on the contributions to NADW renewals and Atlantic meridional overturning circulation (AMOC). Quantitative descriptions of the interbasin exchanges are explained by meridional compensations and supported by previous observations and numerical modeling results. Analysis indicates that the volume and heat exchanges on the interbasin passages proposed in this article manifest their hub roles in the Great Ocean Conveyor System.