Zeynep Cetecioglu
Istanbul Technical University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zeynep Cetecioglu.
Water Research | 2013
Zeynep Cetecioglu; Bahar Ince; Meritxell Gros; Sara Rodriguez-Mozaz; Damià Barceló; Derin Orhon; Orhan Ince
The study evaluates the chronic impact of the antibiotic tetracycline on the biodegradation of organic substrate under anaerobic conditions. The experiments involved an anaerobic sequencing batch reactor fed with a synthetic substrate mixture including glucose, starch and volatile fatty acids, and operated in a sequence of different phases with gradually increasing tetracycline doses of 1.65-8.5 mg/L, for more than five months. Tetracycline exerted a terminal/lethal effect at 8.5 mg/L on the microbial community under anaerobic conditions, which caused the inhibition of substrate/COD utilization and biogas generation and leading to a total collapse of the reactor. The microbial activity could not be recovered and re-started within a period of more than 10 days, even after stopping tetracycline dosing. At lower doses, substrate utilization was not affected but a reduction of 10-20% was observed in the biogas/methane generation, suggesting that substrate utilization of tetracycline to the biomass was limiting their bioavailability. During the experiments, tetracycline was partially removed either through biodegradation or conversion into its by-products. The adverse long-term impact was quite variable for fermenting heterotrophic and methanogenic fractions of the microbial community based on changes inflicted on the composition of remaining/residual organic substrate.
Marine Pollution Bulletin | 2009
Zeynep Cetecioglu; Bahar Ince; Orhan Ince
Physicochemical and microbiological characterization of anoxic sediments taken from seven highly polluted sites of the Marmara Sea was carried out. The 16S rRNA based microbial community structure analyses were performed using domain-specific PCR followed by denaturant gradient gel electrophoresis (DGGE) and sequencing of characteristic bands. The results showed that the microbial communities in these sediments were diverse and evenly distributed. Relating the prokaryotic and geochemical variables through statistical tools revealed that the microbial diversity in the sediments significantly related to depth, and S, Mn and Fe content of the sediments. Fermentative bacteria, denitrifying bacteria and hydrogenotrophic methanogens were dominant whereas sulfate reducing bacteria were absent in the DGGE patterns. This unusual microbial community structure implied that the newly discovered anaerobic methane oxidation coupled to denitrification process may occur in these subseafloor environments.
Bioresource Technology | 2012
Zeynep Cetecioglu; Bahar Ince; Derin Orhon; Orhan Ince
The study evaluated the short-term inhibition impact of three antimicrobials, sulfamethoxazole, erythromycin and tetracycline, on the methanogenic activity of acclimated biomass fed with acetate. Batch reactors were inoculated each with a different antimicrobial concentration in the range of 1-1000 mg/L and they were operated during 6 days. Organic substrate removal was monitored by both soluble COD and acetate measurements, together with daily measurements of biogas and methane generation. While acetate was almost fully removed in all experiments, methane generation exhibited a significant drop with increasing antimicrobial doses. Almost complete methane inhibition was observed for antimicrobial doses above 500 mg/L. Together with adverse impact on process kinetics in the early phases of the experiments, the final acute impact of antimicrobials was on process stoichiometry, preventing complete utilization of acetate removed in metabolic reactions. The observed effect was found compatible with uncompetitive inhibition, which similarly exerts a binding impact on substrate-enzyme complex.
Bioresource Technology | 2015
Sevcan Aydin; Bahar Ince; Zeynep Cetecioglu; Osman Arikan; E. Gozde Ozbayram; Aiyoub Shahi; Orhan Ince
The combined effects of erythromycin-tetracycline-sulfamethoxazole (ETS) and sulfamethoxazole-tetracycline (ST) antibiotics on the performance of anaerobic sequencing batch reactors were studied. A control reactor was fed with wastewater that was free of antibiotics, while two additional reactors were fed with ETS and ST. The way in which the ETS and ST mixtures impact COD removal, VFA production, antibiotic degradation, biogas production and composition were investigated. The effects of the ETS mixtures were different from the ST mixtures, erythromycin can have an antagonistic effect on sulfamethoxazole and tetracycline. The anaerobic pre-treatment of these antibiotics can represent a suitable alternative to the use of chemical treatments for concentrations at 10 mg/L of S and 1 mg/L of T; 2 mg/L of E, 2 mg/L of T and 20 mg/L of S for the ST and ETS reactors respectively, which corresponds to min 70% COD removal efficiency.
Chemosphere | 2015
Sevcan Aydin; Zeynep Cetecioglu; Osman Arikan; Bahar Ince; E. Gozde Ozbayram; Orhan Ince
Antibiotics have the potential to adversely affect the microbial community that is present in biological wastewater treatment processes. The antibiotics that exist in waste streams directly inhibit substrate degradation and also have an influence on the composition of the microbial community. The aim of this study was to evaluate the short-term inhibition impact that various antibiotic combinations had on the syntrophic bacteria, homoacetogenic and methanogenic activities of a microbial community that had been fed with propionate and butyrate as the sole carbon source and VFA mixture (acetate, propionate and butyrate). Acute tests were constructed using on a two way-factorial design, where one factor was the composition of antibiotic mixture and another was the concentration of antibiotics added. In addition, the inhibitory effect of antibiotics was evaluated by monitoring biogas production and the accumulation of individual volatile fatty acids. Specific methanogenic activity batch tests showed a significant (p<0.05) decrease in the maximum methane production rate in the presence of 1 mg L(-1) of antibiotics for the substrate in a VFA mixture and propionate; 1 mg L(-1) of ETS, 25 mg L(-1) of ET, 10 mg L(-1) of ST and ES combination for substrates butyrate. The addition of antibiotics to the batch tests affected the utilization of acetate, propionate and butyrate. This study indicated that antibiotic mixtures have an effect on homoacetogenic bacteria and methanogens, which may exert inhibitory effects on propionate and butyrate-oxidizing syntrophic bacteria, resulting in unfavorable effects on methanogenesis.
Archive | 2011
Bahar Ince; Zeynep Cetecioglu; Orhan Ince
Pulp and paper industry is considered as one of the most polluter industry in the world (Thompson et al., 2001; Sumathi & Hung, 2006). The production process consists two main steps: pulping and bleaching. Pulping is the initial stage and the source of the most pollutant of this industry. In this process, wood chips as raw material are treated to remove lignin and improve fibers for papermaking. Bleaching is the last step of the process, which aims to whiten and brighten the pulp. Whole processes of this industry are very energy and water intensive in terms of the fresh water utilization (Pokhrel & Viraraghavan, 2004). Water consumption changes depending on the production process and it can get as high as 60 m3/ton paper produced in spite of the most modern and best available technologies (Thompson et al., 2001). The wastewaters generated from production processes of this industry include high concentration of chemicals such as sodium hydroxide, sodium carbonate, sodium sulfide, bisulfites, elemental chlorine or chlorine dioxide, calcium oxide, hydrochloric acid, etc (Sumathi & Hung, 2006). The major problems of the wastewaters are high organic content (20-110 kg COD/air dried ton paper), dark brown coloration, adsorbable organic halide (AOX), toxic pollutants, etc. The environmental problems of pulp and paper industry are not limited by the high water consumption. Wastewater generation, solid wastes including sludge generating from wastewater treatment plants and air emissions are other problems and effective disposal and treatment approaches are essential. The significant solid wastes such as lime mud, lime slaker grits, green liquor dregs, boiler and furnace ash, scrubber sludges, wood processing residuals and wastewater treatment sludges are generated from different mills. Disposal of these solid wastes cause environmental problems because of high organic content, partitioning of chlorinated organics, pathogens, ash and trace amount of heavy metal content (Monte et al., 2009). The major air emissions of the industry come from sulfite mills as recovery gurnaces and burnes, sulfur oxides (SOx), from Kraft operation as reduced sulfur gases and odor problems, from wood-chips digestion, spent liquor evaporation and bleaching as volatile organic carbons (VOCs), and from combustion process as nitrogen oxidies (NOx) and SOx. VOCs also include ketone, alcohol and solvents such as carbon disulfide methanol, acetone and chlorofom (Smook, 1992).
Water Research | 2016
Zeynep Cetecioglu; Bahar Ince; Derin Orhon; Orhan Ince
In this study, microbial community dynamics were assessed in two lab-scale anaerobic sequencing batch reactors (ASBRs). One of the reactors was fed by synthetic pharmaceutical industry wastewater with sulfamethoxazole (SMX) as the test reactor and the other without sulfamethoxazole as the control reactor. DNA based DGGE results indicated that Clostiridum sp. became dominant in the SMX reactor while the inoculum was dominated with Firmicutes (61%) and Methanomicrobiales (28%). However their abundances in active community decreased through the last phase. Also the abundance of hydrogenotrophs was high in each phase, while acetoclastic methanogens disappeared in the last phase. Q-PCR analysis revealed that there is a significant reduction in the bacterial community approximately 84%, while methanogens increased to 97% through the operation. Additionally an increase in the expression level of bacterial and methanogenic 16S rRNA (60% and 20%, respectively) was detected. Significant correlation between microbial community and the reactor operation data was found. The study demonstrated that the microbial community maintains the system stability under high antibiotic concentration and long-term operation by homoacetogenesis coupled with hydrogenotrophic methanogenesis.
Science of The Total Environment | 2015
Zeynep Cetecioglu; Bahar Ince; Meritxell Gros; Sara Rodriguez-Mozaz; Damià Barceló; Orhan Ince; Derin Orhon
This study evaluated the chronic impact and biodegradability of sulfamethoxazole under anaerobic conditions. For this purpose, a lab-scale anaerobic sequencing batch reactor was operated in a sequence of different phases with gradually increasing sulfamethoxazole doses of 1 to 45 mg/L. Conventional parameters, such as COD, VFA, and methane generation, were monitored with corresponding antimicrobial concentrations in the reactor and the methanogenic activity of the sludge. The results revealed that anaerobic treatment was suitable for pharmaceutical industry wastewater with concentrations of up to 40 mg/L of sulfamethoxazole. Higher levels exerted toxic effects on the microbial community under anaerobic conditions, causing the inhibition of substrate/COD utilization and biogas generation and leading to a total collapse of the reactor. The adverse long-term impact was quite variable for fermentative bacteria and methanogenic achaea fractions of the microbial community based on changes inflicted on the composition of the residual organic substrate and mRNA expression of the key enzymes.
Water Science and Technology | 2014
Sevcan Aydin; Bahar Ince; Zeynep Cetecioglu; Emine Gozde Ozbayram; Aiyoub Shahi; O. Okay; Osman Arikan; Orhan Ince
This study evaluates the joint effects of erythromycin-sulfamethoxazole (ES) combinations on anaerobic treatment efficiency and the potential for antibiotic degradation during anaerobic sequencing batch reactor operation. The experiments involved two identical anaerobic sequencing batch reactors. One reactor, as control unit, was fed with synthetic wastewater while the other reactor (ES) was fed with a synthetic substrate mixture including ES antibiotic combinations. The influence of ES antibiotic mixtures on chemical oxygen demand (COD) removal, volatile fatty acid production, antibiotic degradation, biogas production, and composition were investigated. The influent antibiotic concentration was gradually increased over 10 stages, until the metabolic collapse of the reactors, which occurred at 360 days for the ES reactor. The results suggest that substrate/COD utilization and biogas/methane generation affect performance of the anaerobic reactors at higher concentration. In addition, an average of 40% erythromycin and 37% sulfamethoxazole reduction was achieved in the ES reactor. These results indicated that these antibiotics were partly biodegradable in the anaerobic reactor system.
Environmental Science and Pollution Research | 2014
Zeynep Cetecioglu
Biological treatment of antibiotic production effluents is an economical approach; however, there are still difficulties to overcome because of the recalcitrant characteristics of these compounds to biodegradation. This study aims to reveal that anaerobic treatment technology can be an option as pretreatment before the activated sludge system treatment to treat antibiotic production effluents. The ISO 8192 method was chosen to test the inhibitory effect of raw and treated antibiotic production effluents in this work. Inhibition tests, which were applied according to ISO 8192, highlighted that the anaerobic treatment effluent is less inhibitory than antibiotic production effluent for activated sludge system. Early EC50 concentrations (30-min values) of raw and treated wastewaters were lower than 180-min values. Also, triple effects (sulfamethoxazole–erythromycin–tetracycline) of antibiotics are more toxic than dual effects (sulfamethoxazole–tetracycline). In light of the experimental results obtained and their evaluation, it can be concluded that anaerobic digestion can be applied as a biological pretreatment method for pharmaceutical industry wastewater including antibiotic mixtures prior to aerobic treatment.