Zeynep Karahaliloğlu
Aksaray University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zeynep Karahaliloğlu.
Materials Science and Engineering: C | 2014
Nazlı Çalışkan; Cem Bayram; Ebru Erdal; Zeynep Karahaliloğlu; Emir Baki Denkbaş
This study aims to generate a bactericidal agent releasing surface via nanotube layer on titanium metal and to investigate how aspect ratio of nanotubes affects drug elution time and cell proliferation. Titania nanotube layers were generated on metal surfaces by anodic oxidation at various voltage and time parameters. Gentamicin loading was carried out via simple pipetting and the samples were tested against S. aureus for the efficacy of the applied modification. Drug releasing time and cell proliferation were also tested in vitro. Titania nanotube layers with varying diameters and lengths were prepared after anodization and anodizing duration was found as the most effective parameter for amount of loaded drug and drug releasing time. Drug elution lasted up to 4 days after anodizing for 80 min of the samples, whereas release completed in 24 h when the samples were anodized for 20 min. All processed samples had bactericidal properties against S. aureus organism except unmodified titanium, which was also subjected to drug incorporation step. The anodization also enhanced water wettability and cell adhesion results. Anodic oxidation is an effective surface modification to enhance tissue-implant interactions and also resultant titania layer can act as a drug reservoir for the release of bactericidal agents. The use of implants as local drug eluting devices is promising but further in vivo testing is required.
Journal of Biomedical Materials Research Part A | 2015
Zeynep Karahaliloğlu; Batur Ercan; Emir Baki Denkbaş; Thomas J. Webster
As an effort to create the next generation of improved skin graft materials, in this study, we modified the surfaces of a previously investigated material, silk fibroin, using a NaOH alkaline treatment to obtain a biologically inspired nanofeatured surface morphology. Such surfaces were characterized for roughness, energy, and chemistry. In addition, keratinocyte (skin-forming cells) adhesion and proliferation on such nanofeatured silk fibroin wound dressings were studied in an initial attempt to determine the promotion of an epidermal cover on the wound bed to form a new epidermal barrier. Dermal fibroblast adhesion and proliferation were also studied to assess the ability of nanostructured silk fibroin to replace damaged dermal tissue in chronic wounds (i.e., for diabetic foot ulcers). Results demonstrated for the first time that keratinocyte and fibroblast cell density was greater on nanofeatured silk fibroin membranes compared with non-treated silk fibroin surfaces. The enhancement in cellular functions was correlated with an increase in silk surface nanotopography, wettability and change in chemistry after NaOH treatment. Due to the present promising results, the newly developed nanofeatured silk fibroin membranes are exciting alternative skin graft materials which should be further studied for various skin patch and wound dressing applications.
Artificial Cells Nanomedicine and Biotechnology | 2017
Zeynep Karahaliloğlu; Ebru Kilicay; Emir Baki Denkbaş
Abstract Antimicrobial mixed dressings have traditionally been used to minimize bacterial infection of burns and other wounds. This study presents the advancement of biocompatible chitosan/silk sericin (CHT/SS) scaffolds combined with lauric acid (LA) and zinc oxide nanoparticles (nZnO) for the successful wound dressing applications. Antibacterial assay results showed that the diameters of the inhibition zone increased from 2 ± 0.4 to 7 ± 0.1 mm for Escherichia coli, as well as from 2.5 ± 0.2 to 6 ± 0.4 mm for Staphylococcus aureus while CHTS/SS/100nZnO compared to CHT/SS/0.01LA. The results not only showed excellent inhibition against Gram-positive and Gram-negative bacterial growth but also revealed improved proliferation and extended viability for HaCaT cells.
Journal of Biomedical Materials Research Part A | 2014
Zeynep Karahaliloğlu; Batur Ercan; Stanley Chung; Erik N. Taylor; Emir Baki Denkbaş; Thomas J. Webster
Major issues faced with the use of todays skin grafts are infection, scar tissue formation, insufficient keratinocyte (or skin producing cells) proliferation and high production costs. To overcome these limitations, we propose here for the first time, a nanofeatured poly(lactide-co-glycolide) (PLGA) membrane as a next generation antibacterial skin graft material. An alkaline surface treatment method was used to create random nanofeatures on PLGA membranes where sodium hydroxide (NaOH) concentration and exposure times were altered to control surface morphology. Most significantly, and without the use of antibiotics, results showed a decrease in Staphylococcus aureus (a dangerous pathogen infecting skin grafts) growth for up to ∼40% after 2 days of culture on nanofeatured PLGA membranes compared to untreated controls. Results also showed that while bacteria growth was stunted, mammalian cell growth was not. Specifically, cell culture results showed an increase in human epidermal keratinocyte density, while the density of scar tissue forming human dermal fibroblasts, did not change on nanofeatured PLGA surfaces compared to the untreated controls after 3 days of culture. These findings indicate that the alkaline treatment of PLGA membranes is a promising quick and effective manner to limit scar tissue formation and bacterial invasion while increasing skin cell proliferation for improving numerous wound-healing applications.
Journal of Microencapsulation | 2016
Ebru Kilicay; Zeynep Karahaliloğlu; Baki Hazer; Ishak Ozel Tekin; Emir Baki Denkbaş
Abstract The aim of this study was to evaluate therapeutic potential of curcumin-loaded poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) PHBHHx nanoparticles (CUR-NPs) and concanavaline A conjugated curcumin-loaded NPs (ConA-CUR-NPs) for breast cancer treatment. The size and zeta potential of prepared NPs were about 228 ± 5 nm and −23.3 mV, respectively. The entrapment efficiencies of polymer/drug weight ratios, 1.25CUR-NPs, 2.5CUR-NPs, 5CUR-NPs, ConA-1.25CUR-NPs, ConA-2.5CUR-NPs and ConA-5CUR-NPs were found to be ≈68, 55, 45, 70, 60 and 51%, respectively. Optimized NPs formulations in the freeze-dried form were assessed with their short-term stability for 30 days of storage at 4 °C and 25 °C. Anticancer activity of ConA-CUR-NPs was proved by MTT assay and reconfirmed by double staining and flow cytometry results. The anticancer activity of ConA-CUR-NPs was measured in human breast cancer cells (MDA-MB 231) in vitro, and the results revealed that the ConA-CUR-NPs had better tumor cells decline activity.
Journal of Bioactive and Compatible Polymers | 2017
Zeynep Karahaliloğlu; Eda Yalçın; Murat Demirbilek; Emir Baki Denkbaş
Recently, the incorporation of magnetic nanoparticles into standard scaffolds has emerged as a promising approach for tissue engineering applications. This strategy can promote not only tissue regeneration but also reloading of scaffolds through an external supervising center that adsorbs growth factors, preserving their stability and biological activity. In this study, novel magnetic silk fibroin e-gel scaffolds were prepared by the electrogelation process of concentrated Bombyx mori silk fibroin (8 wt%) aqueous solution. In addition, basic fibroblast growth factor was conjugated physically to human serum albumin = Fe3O4 nanoparticles (71.52 ± 2.3 nm in size) with 97.5% binding yield. Scanning electron microscopy images of the prepared human serum albumin = Fe3O4-basic fibroblast growth factor-loaded silk fibroin e-gel scaffolds showed a three-dimensional porous morphology. In terms of water uptake, basic fibroblast growth factor-conjugated scaffolds had the highest water absorbability among all groups. In vitro cell culture studies showed that both the human serum albumin coating of Fe3O4 nanoparticle surface and basic fibroblast growth factor conjugation had an inductive effect on cell viability. One of the most used markers of bone formation and osteoblast differentiation is alkaline phosphatase activity; human serum albumin = Fe3O4-basic fibroblast growth factor-loaded silk fibroin e-gels showed significantly enhanced alkaline phosphatase activity (p < 0.05). SaOS-2 cells cultured on human serum albumin = Fe3O4-basic fibroblast growth factor-loaded silk fibroin e-gels deposited more calcium compared with those cultured on bare silk fibroin e-gels. These results indicated that the proposed e-gel scaffolds are valuable candidates for magnetic guiding in bone tissue regeneration, and they will present new perspectives for magnetic field application in regenerative medicine.
Artificial Cells Nanomedicine and Biotechnology | 2016
Zeynep Karahaliloğlu; Murat Demirbilek; Mesut Şam; Necdet Sağlam; Alpay Koray Mızrak; Emir Baki Denkbaş
The aim of the study is in vitro investigation of the feasibility of surface-modified bacterial nanofibrous poly [(R)-3-hydroxybutyrate] (PHB) graft for bladder reconstruction. In this study, the surface of electrospun bacterial PHB was modified with PEG- or EDA via radio frequency glow discharge method. After plasma modification, contact angle of EDA-modified PHB scaffolds decreased from 110 ± 1.50 to 23 ± 0.5 degree. Interestingly, less calcium oxalate stone deposition was observed on modified PHB scaffolds compared to that of non-modified group. Results of this study show that surface-modified scaffolds not only inhibited calcium oxalate growth but also enhanced the uroepithelial cell viability and proliferation.
Artificial Cells Nanomedicine and Biotechnology | 2015
Murat Demirbilek; Mustafa Sakar; Zeynep Karahaliloğlu; Ebru Erdal; Eda Yalçın; Gökhan Bozkurt; Petek Korkusuz; Elif Bilgiç; Çağrı Mesut Temuçin; Emir Baki Denkbaş
Abstract The conventional method of peripheral nerve gap treatment is autografting. This method is limited. In this study, an aligned nanofibrous graft was formed using microbial polyester, Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). The regenerative effect of the graft was compared with that of autografting in vivo. To determine the regenerative effect, rats were assessed with sciatic nerve functional index, electromyographic evaluation, and histological evaluation. Results found in this study include PHBV grafts stimulated progressive nerve regeneration, although regeneration was not comparable with that of autografting. We conclude that the study results were promising for aligned bacterial polymeric grafts for peripheral nerve regeneration.
Materials Technology | 2018
Zeynep Karahaliloğlu
Abstract Recently, silk fibroin gel systems (e-gel), formed with weak electric fields have been prepared for various tissue-engineering applications such as neural, cartilage and bone. Here, we demonstrated the effectiveness of an electroresponsive silk fibroin (SF) hydrogel, which is a 3-D scaffold formed and used as a wound dressing material. SEM studies revealed that the curcumin (CUR)-loaded SF (CUR-SF) consisted of a 3-D porous structure with a porosity percent of 80% and a swelling ratio over 100%. Colony forming unit assay confirmed that CUR-SF e-gel scaffolds produced a reduction in viable bacteria compared to bare SF scaffolds. In vitro studies performed with immortalized human keratinocyte (HaCaT) indicated no toxicity of CUR-loaded SF e-gel scaffolds to healthy cells. Taking all the results together, it was suggested that the CUR-SF e-gel scaffolds could improve the wound healing activity in comparison to SF without curcumin and be potentially used as a wound dressing material.
Journal of Bioactive and Compatible Polymers | 2018
Zeynep Karahaliloğlu; Ebru Kilicay; Pınar Alpaslan; Baki Hazer; Emir Baki Denkbaş
The development of novel combination anticancer drug delivery systems is an important step to improve the effectiveness of anticancer treatment in metastatic breast cancer and to overcome increased toxicity of the currently used combination treatments. The aim of this study was to assess efficient targeting, therapeutic efficacy, and bioavailability of a combination of drugs (curcumin and α-tocopheryl succinate) loaded polystyrene–polysoyaoil–diethanol amine nanoparticles. Polystyrene–polysoyaoil–diethanol amine nanoparticles encapsulating two drugs, individually or in combination, were prepared by double-emulsion solvent evaporation method, resulting in particle size smaller than 250 nm with a surface negative charge between −30 and −40 mV. Entrapment efficiency of curcumin and α-tocopheryl succinate in the epigallocatechin gallate–conjugated dual-drug-loaded nanoparticles was found to be 68% and 80%, respectively. The release kinetics of curcumin and α-tocopheryl succinate from the nanoparticles exhibited a gradual and continuous profile followed by an initial burst behavior with a release over 20 days in vitro. Next, we have investigated the anticancer activity of nanoparticles encapsulating both the drugs and individually drug in human breast cancer cells (MDA-MB-231) using double-staining-based cell death analysis, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assessment of cytotoxicity and flow cytometer. In vitro cytotoxicity studies revealed that epigallocatechin gallate–α-tocopheryl succinate/curcumin–polystyrene–polysoyaoil–diethanol amine nanoparticles are more potent than the corresponding α-tocopheryl succinate/curcumin–polystyrene–polysoyaoil–diethanol amine nanoparticles and their single-drug-loaded forms and show a synergistic and breast tumor targeting function. Thus, here, we propose epigallocatechin gallate–conjugated curcumin and α-tocopheryl succinate–loaded polystyrene–polysoyaoil–diethanol amine nanoparticles which effectively inhibit tumor growth and reduce toxicity compared to single-drug chemotherapy.