Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhan-Guo Gao is active.

Publication


Featured researches published by Zhan-Guo Gao.


Nature Reviews Drug Discovery | 2006

Adenosine receptors as therapeutic targets

Kenneth A. Jacobson; Zhan-Guo Gao

Adenosine receptors are major targets of caffeine, the most commonly consumed drug in the world. There is growing evidence that they could also be promising therapeutic targets in a wide range of conditions, including cerebral and cardiac ischaemic diseases, sleep disorders, immune and inflammatory disorders and cancer. After more than three decades of medicinal chemistry research, a considerable number of selective agonists and antagonists of adenosine receptors have been discovered, and some have been clinically evaluated, although none has yet received regulatory approval. However, recent advances in the understanding of the roles of the various adenosine receptor subtypes, and in the development of selective and potent ligands, as discussed in this review, have brought the goal of therapeutic application of adenosine receptor modulators considerably closer.


Science | 2011

Structure of an Agonist-Bound Human A2A Adenosine Receptor

Fei Xu; Huixian Wu; Vsevolod Katritch; Gye Won Han; Kenneth A. Jacobson; Zhan-Guo Gao; Vadim Cherezov; Raymond C. Stevens

Changes associated with conformationally selective agonist binding shed light on G protein–coupled receptor activation. Activation of G protein–coupled receptors upon agonist binding is a critical step in the signaling cascade for this family of cell surface proteins. We report the crystal structure of the A2A adenosine receptor (A2AAR) bound to an agonist UK-432097 at 2.7 angstrom resolution. Relative to inactive, antagonist-bound A2AAR, the agonist-bound structure displays an outward tilt and rotation of the cytoplasmic half of helix VI, a movement of helix V, and an axial shift of helix III, resembling the changes associated with the active-state opsin structure. Additionally, a seesaw movement of helix VII and a shift of extracellular loop 3 are likely specific to A2AAR and its ligand. The results define the molecule UK-432097 as a “conformationally selective agonist” capable of receptor stabilization in a specific active-state configuration.


Nature | 2014

Structure of the human P2Y12 receptor in complex with an antithrombotic drug

Kaihua Zhang; Jin Zhang; Zhan-Guo Gao; Dandan Zhang; Lan Zhu; Gye Won Han; Steven M. Moss; Silvia Paoletta; Evgeny Kiselev; Weizhen Lu; Gustavo Fenalti; Wenru Zhang; Christa E. Müller; Huaiyu Yang; Hualiang Jiang; Vadim Cherezov; Vsevolod Katritch; Kenneth A. Jacobson; Raymond C. Stevens; Beili Wu; Qiang Zhao

P2Y receptors (P2YRs), a family of purinergic G-protein-coupled receptors (GPCRs), are activated by extracellular nucleotides. There are a total of eight distinct functional P2YRs expressed in human, which are subdivided into P2Y1-like receptors and P2Y12-like receptors. Their ligands are generally charged molecules with relatively low bioavailability and stability in vivo, which limits our understanding of this receptor family. P2Y12R regulates platelet activation and thrombus formation, and several antithrombotic drugs targeting P2Y12R—including the prodrugs clopidogrel (Plavix) and prasugrel (Effient) that are metabolized and bind covalently, and the nucleoside analogue ticagrelor (Brilinta) that acts directly on the receptor—have been approved for the prevention of stroke and myocardial infarction. However, limitations of these drugs (for example, a very long half-life of clopidogrel action and a characteristic adverse effect profile of ticagrelor) suggest that there is an unfulfilled medical need for developing a new generation of P2Y12R inhibitors. Here we report the 2.6 Å resolution crystal structure of human P2Y12R in complex with a non-nucleotide reversible antagonist, AZD1283. The structure reveals a distinct straight conformation of helix V, which sets P2Y12R apart from all other known class A GPCR structures. With AZD1283 bound, the highly conserved disulphide bridge in GPCRs between helix III and extracellular loop 2 is not observed and appears to be dynamic. Along with the details of the AZD1283-binding site, analysis of the extracellular interface reveals an adjacent ligand-binding region and suggests that both pockets could be required for dinucleotide binding. The structure provides essential insights for the development of improved P2Y12R ligands and allosteric modulators as drug candidates.


Journal of Medicinal Chemistry | 2010

Structure-Based Discovery of A2A Adenosine Receptor Ligands

Jens Carlsson; Lena Yoo; Zhan-Guo Gao; John J. Irwin; Brian K. Shoichet; Kenneth A. Jacobson

The recent determination of X-ray structures of pharmacologically relevant GPCRs has made these targets accessible to structure-based ligand discovery. Here we explore whether novel chemotypes may be discovered for the A2A adenosine receptor, based on complementarity to its recently determined structure. The A2A adenosine receptor signals in the periphery and the CNS, with agonists explored as anti-inflammatory drugs and antagonists explored for neurodegenerative diseases. We used molecular docking to screen a 1.4 million compound database against the X-ray structure computationally and tested 20 high-ranking, previously unknown molecules experimentally. Of these 35% showed substantial activity with affinities between 200 nM and 9 μM. For the most potent of these new inhibitors, over 50-fold specificity was observed for the A2A versus the related A1 and A3 subtypes. These high hit rates and affinities at least partly reflect the bias of commercial libraries toward GPCR-like chemotypes, an issue that we attempt to investigate quantitatively. Despite this bias, many of the most potent new ligands were novel, dissimilar from known ligands, providing new lead structures for modulation of this medically important target.


Nature | 2014

Agonist-bound structure of the human P2Y12 receptor

Jin Zhang; Kaihua Zhang; Zhan-Guo Gao; Silvia Paoletta; Dandan Zhang; Gye Won Han; Tingting Li; Limin Ma; Wenru Zhang; Christa E. Müller; Huaiyu Yang; Hualiang Jiang; Vadim Cherezov; Vsevolod Katritch; Kenneth A. Jacobson; Raymond C. Stevens; Beili Wu; Qiang Zhao

The P2Y12 receptor (P2Y12R), one of eight members of the P2YR family expressed in humans, is one of the most prominent clinical drug targets for inhibition of platelet aggregation. Although mutagenesis and modelling studies of the P2Y12R provided useful insights into ligand binding, the agonist and antagonist recognition and function at the P2Y12R remain poorly understood at the molecular level. Here we report the structures of the human P2Y12R in complex with the full agonist 2-methylthio-adenosine-5′-diphosphate (2MeSADP, a close analogue of endogenous agonist ADP) at 2.5 Å resolution, and the corresponding ATP derivative 2-methylthio-adenosine-5′-triphosphate (2MeSATP) at 3.1 Å resolution. These structures, together with the structure of the P2Y12R with antagonist ethyl 6-(4-((benzylsulfonyl)carbamoyl)piperidin-1-yl)-5-cyano-2-methylnicotinate (AZD1283), reveal striking conformational changes between nucleotide and non-nucleotide ligand complexes in the extracellular regions. Further analysis of these changes provides insight into a distinct ligand binding landscape in the δ-group of class A G-protein-coupled receptors (GPCRs). Agonist and non-nucleotide antagonist adopt different orientations in the P2Y12R, with only partially overlapped binding pockets. The agonist-bound P2Y12R structure answers long-standing questions surrounding P2Y12R–agonist recognition, and reveals interactions with several residues that had not been reported to be involved in agonist binding. As a first example, to our knowledge, of a GPCR in which agonist access to the binding pocket requires large-scale rearrangements in the highly malleable extracellular region, the structural and docking studies will therefore provide invaluable insight into the pharmacology and mechanisms of action of agonists and different classes of antagonists for the P2Y12R and potentially for other closely related P2YRs.


Nature | 2015

Two disparate ligand-binding sites in the human P2Y1 receptor.

Dandan Zhang; Zhan-Guo Gao; Kaihua Zhang; Evgeny Kiselev; Steven Crane; Jiang Wang; Silvia Paoletta; Cuiying Yi; Limin Ma; Wenru Zhang; Gye Won Han; Hong Liu; Vadim Cherezov; Vsevolod Katritch; Hualiang Jiang; Raymond C. Stevens; Kenneth A. Jacobson; Qiang Zhao; Beili Wu

In response to adenosine 5′-diphosphate, the P2Y1 receptor (P2Y1R) facilitates platelet aggregation, and thus serves as an important antithrombotic drug target. Here we report the crystal structures of the human P2Y1R in complex with a nucleotide antagonist MRS2500 at 2.7 Å resolution, and with a non-nucleotide antagonist BPTU at 2.2 Å resolution. The structures reveal two distinct ligand-binding sites, providing atomic details of P2Y1Rs unique ligand-binding modes. MRS2500 recognizes a binding site within the seven transmembrane bundle of P2Y1R, which is different in shape and location from the nucleotide binding site in the previously determined structure of P2Y12R, representative of another P2YR subfamily. BPTU binds to an allosteric pocket on the external receptor interface with the lipid bilayer, making it the first structurally characterized selective G-protein-coupled receptor (GPCR) ligand located entirely outside of the helical bundle. These high-resolution insights into P2Y1R should enable discovery of new orthosteric and allosteric antithrombotic drugs with reduced adverse effects.


Biochemical Pharmacology | 2003

N6-Substituted adenosine derivatives: selectivity, efficacy, and species differences at A3 adenosine receptors

Zhan-Guo Gao; Joshua B. Blaustein; Ariel S. Gross; Neli Melman; Kenneth A. Jacobson

The activation of the human A(3) adenosine receptor (AR) by a wide range of N(6)-substituted adenosine derivatives was studied in intact CHO cells stably expressing this receptor. Selectivity of binding at rat and human ARs was also determined. Among N(6)-alkyl substitutions, small N(6)-alkyl groups were associated with selectivity for human A(3)ARs vs. rat A(3)ARs, and multiple points of branching were associated with decreased hA(3)AR efficacy. N(6)-Cycloalkyl-substituted adenosines were full (</=5 carbons) or partial (>/=6 carbons) hA(3)AR agonists. N(6)-(endo-Norbornyl)adenosine 13 was the most selective for both rat and human A(1)ARs. Numerous N(6)-arylmethyl analogues, including substituted benzyl, tended to be more potent in binding to A(1) and A(3) vs. A(2A)ARs (with variable degrees of partial to full A(3)AR agonisms). A chloro substituent decreased the efficacy depending on its position on the benzyl ring. The A(3)AR affinity and efficacy of N(6)-arylethyl adenosines depended highly on stereochemistry, steric bulk, and ring constraints. Stereoselectivity of binding was demonstrated for N(6)-(R-1-phenylethyl)adenosine vs. N(6)-(S-1-phenylethyl)adenosine, as well as for the N(6)-(1-phenyl-2-pentyl)adenosine, at the rat, but not human A(3)AR. Interestingly, DPMA, a potent agonist for the A(2A)AR (K(i)=4nM), was demonstrated to be a moderately potent antagonist for the human A(3)AR (K(i)=106nM). N(6)-[(1S,2R)-2-Phenyl-1-cyclopropyl]adenosine 48 was 1100-fold more potent in binding to human (K(i)=0.63nM) than rat A(3)ARs. Dual acting A(1)/A(3) agonists (N(6)-3-chlorobenzyl- 29, N(6)-(S-1-phenylethyl)- 39, and 2-chloro-N(6)-(R-phenylisopropyl)adenosine 53) might be useful for cardioprotection.


Expert Opinion on Emerging Drugs | 2007

Emerging adenosine receptor agonists

Zhan-Guo Gao; Kenneth A. Jacobson

Adenosine receptors (ARs) are a four-member subfamily of G protein-coupled receptors and are major targets of caffeine and theophylline. There are four subtypes of ARs, designated as A1, A2A, A2B and A3. Selective agonists are now available for all four subtypes. Over a dozen of these selective agonists are now in clinical trials for various conditions, although none has received regulatory approval except for the endogenous AR agonist adenosine itself. A1AR agonists are in clinical trials for cardiac arrhythmias and neuropathic pain. A2AAR agonists are now in trials for myocardial perfusion imaging and as anti-inflammatory agents. A2BAR agonists are under preclinical scrutiny for potential treatment of cardiac ischemia. A3AR agonists are in clinical trials for the treatment of rheumatoid arthritis and colorectal cancer. The present review will mainly cover the agonists that are presently in clinical trials for various conditions and only a brief introduction will be given to major chemical classes of AR agonists presently under investigation.


Mini-reviews in Medicinal Chemistry | 2005

Allosteric Modulation of the Adenosine Family of Receptors

Zhan-Guo Gao; Soo-Kyung Kim; Adriaan P. IJzerman; Kenneth A. Jacobson

Allosteric modulators for adenosine receptors (ARs) are of an increasing interest and may have potential therapeutic advantage over orthosteric ligands. Benzoylthiophene derivatives (including PD 81,723), 2-aminothiazolium salts, and related allosteric modulators of the A(1) AR have been studied. The benzoylthiophene derivatives were demonstrated to be selective enhancers for the A(1) AR, with little or no effect on other subtypes of ARs. Allosteric modulation of the A(2A) AR has also been reported. A(3) allosteric enhancers may be predicted to be useful against ischemic conditions. We have recently characterized two classes of A(3) AR allosteric modulators: 3-(2-pyridinyl)isoquinolines (e.g. VUF5455) and 1H-imidazo-[4,5-c]quinolin-4-amines (e.g. DU124183), which selectively decreased the agonist dissociation rate at the human A(3)AR but not at A(1) and A(2A) ARs. DU124183 left-shifted the agonist conc.-response curve for inhibition of forskolin-stimulated cAMP accumulation in intact cells expressing the human A(3)AR with up to 30% potentiation of the maximal efficacy. The increased potency of A(3) agonists was evident only in the presence of an A(3) antagonist, since VUF5455 and DU124183 also antagonized, i.e. displaced binding at the orthosteric site, with K(i) values of 1.68 and 0.82 microM, respectively. A(3)AR mutagenesis studies implicated F182(5.43) and N274(7.45) in the action of the enhancers and was interpreted using a rhodopsin-based A(3)AR molecular model, suggesting multiple binding modes. Amiloride analogues, SCH-202676 (N-(2,3-diphenyl-1,2,4-thiadiazol-5(2H)-ylidene)methanamine), and sodium ions were demonstrated to be common allosteric modulators for at least three subtypes (A(1), A(2A), and A(3)) of ARs.


Drug Discovery Today | 2006

Keynote review: Allosterism in membrane receptors

Zhan-Guo Gao; Kenneth A. Jacobson

Allosteric modulation of membrane receptors has been intensively studied in the past three decades and is now considered to be an important indirect mechanism for the control of receptor function. The allosteric site on the GABA(A) receptor is the target for the most widely prescribed sleep medicines, the benzodiazepines. Cinacalcet, an allosteric enhancer of the calcium-sensing receptor, is used to treat secondary hyperparathyroidism. Allosteric ligands might be especially valuable to control receptors for which the design of selective orthosteric agonists or antagonists has been elusive, such as muscarinic acetylcholine receptors.

Collaboration


Dive into the Zhan-Guo Gao's collaboration.

Top Co-Authors

Avatar

Kenneth A. Jacobson

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Dilip K. Tosh

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Silvia Paoletta

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Soo-Kyung Kim

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Khai Phan

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Bhalchandra V. Joshi

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Hea Ok Kim

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge