Zhang-Jie Wang
Xi'an Jiaotong University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zhang-Jie Wang.
Applied Physics Letters | 2012
Zhang-Jie Wang; Qing-Jie Li; Zhi-Wei Shan; Ju Li; Jun Sun; E. Ma
In situ transmission electron microscope compression testing of submicron Al pillars shows two sample size regimes with contrasting behavior underlying the large strain bursts. For small pillars, the bursts originate from explosive and highly correlated dislocation generation, characterized by very high collapse stresses and nearly dislocation-free post-collapse microstructure. For larger pillars, the bursts result from the reconstruction of jammed dislocation configurations, featuring relative low stress levels and retention of dislocation network after bursts.
Nature Communications | 2017
Zijiao Zhang; H. W. Sheng; Zhang-Jie Wang; Bernd Gludovatz; Ze Zhang; E.P. George; Qian Yu; Scott X. Mao; Robert O. Ritchie
Combinations of high strength and ductility are hard to attain in metals. Exceptions include materials exhibiting twinning-induced plasticity. To understand how the strength-ductility trade-off can be defeated, we apply in situ, and aberration-corrected scanning, transmission electron microscopy to examine deformation mechanisms in the medium-entropy alloy CrCoNi that exhibits one of the highest combinations of strength, ductility and toughness on record. Ab initio modelling suggests that it has negative stacking-fault energy at 0K and high propensity for twinning. With deformation we find that a three-dimensional (3D) hierarchical twin network forms from the activation of three twinning systems. This serves a dual function: conventional twin-boundary (TB) strengthening from blockage of dislocations impinging on TBs, coupled with the 3D twin network which offers pathways for dislocation glide along, and cross-slip between, intersecting TB-matrix interfaces. The stable twin architecture is not disrupted by interfacial dislocation glide, serving as a continuous source of strength, ductility and toughness.
Nature Materials | 2015
Degang Xie; Zhang-Jie Wang; Jun Sun; Ju Li; E. Ma; Zhi-Wei Shan
The presence of excess hydrogen at the interface between a metal substrate and a protective oxide can cause blistering and spallation of the scale. However, it remains unclear how nanoscale bubbles manage to reach the critical size in the first place. Here, we perform in situ environmental transmission electron microscopy experiments of the aluminium metal/oxide interface under hydrogen exposure. It is found that once the interface is weakened by hydrogen segregation, surface diffusion of Al atoms initiates the formation of faceted cavities on the metal side, driven by Wulff reconstruction. The morphology and growth rate of these cavities are highly sensitive to the crystallographic orientation of the aluminium substrate. Once the cavities grow to a critical size, the internal gas pressure can become great enough to blister the oxide layer. Our findings have implications for understanding hydrogen damage of interfaces.
Scripta Materialia | 2005
F. Jiang; Zhang-Jie Wang; Zhaoyang Zhang; Jun Sun
Zr55Al10Cu30Ni5 bulk metallic glass (BMG) is formed by using low purity sponge zirconium, instead of high purity zirconium, and other high purity raw materials with a small amount of scandium addition. The results show that glass forming ability and thermal stability of the Zr55Al10Cu30Ni5 alloy are improved with scandium addition. Compressive fracture strength is similar to that of BMG alloy produced with high purity raw materials. However, plasticity of BMGs with sponge zirconium and scandium addition deteriorates.
Nature Communications | 2016
Degang Xie; Suzhi Li; Meng Li; Zhang-Jie Wang; Peter Gumbsch; Jun Sun; E. Ma; Ju Li; Zhi-Wei Shan
Due to its high diffusivity, hydrogen is often considered a weak inhibitor or even a promoter of dislocation movements in metals and alloys. By quantitative mechanical tests in an environmental transmission electron microscope, here we demonstrate that after exposing aluminium to hydrogen, mobile dislocations can lose mobility, with activating stress more than doubled. On degassing, the locked dislocations can be reactivated under cyclic loading to move in a stick-slip manner. However, relocking the dislocations thereafter requires a surprisingly long waiting time of ∼103 s, much longer than that expected from hydrogen interstitial diffusion. Both the observed slow relocking and strong locking strength can be attributed to superabundant hydrogenated vacancies, verified by our atomistic calculations. Vacancies therefore could be a key plastic flow localization agent as well as damage agent in hydrogen environment.
Materials research letters | 2015
Rui Huang; Qing-Jie Li; Zhang-Jie Wang; Ju Li; E. Ma; Zhi-Wei Shan
Through in situ scanning electron microscope microcompression tests, we demonstrated that the strain-rate sensitivity of body-centered cubic single crystal iron pillars will be reduced by one order when the pillar size was reduced from 1000 to about 200 nm. In addition, size-strengthening exponent exhibited obvious strain-rate dependence. We propose that the observed behavior is a result of the high stresses required to induce curvature bowout of dislocation arms at small sample or grain sizes, which overwhelms the lattice friction stress contribution and diminishes the role played by the mobility difference between edge and screw dislocations.
Proceedings of the National Academy of Sciences of the United States of America | 2015
Zhang-Jie Wang; Qing-Jie Li; Yinan Cui; Zhan-Li Liu; E. Ma; Ju Li; Jun Sun; Zhuo Zhuang; Ming Dao; Zhi-Wei Shan; S. Suresh
Significance Producing strong and defect-free materials is an important objective in developing many new materials. Thermal treatments aimed at defect elimination often lead to undesirable levels of strength and other properties. Although monotonic loading can reduce or even eliminate dislocations in submicroscale single crystals, such “mechanical healing” causes severe plastic deformation and significant shape changes. Inspired by observing an easier pullout of a partly buried object after shaking it first, we demonstrate that “cyclic healing” of the small-volume single crystals can indeed be achieved through repeated low-amplitude straining. The cyclic healing method points to versatile avenues for tailoring the defect structure and strengthening of nanoscale metal crystals without the need for thermal annealing or severe plastic deformation. When microscopic and macroscopic specimens of metals are subjected to cyclic loading, the creation, interaction, and accumulation of defects lead to damage, cracking, and failure. Here we demonstrate that when aluminum single crystals of submicrometer dimensions are subjected to low-amplitude cyclic deformation at room temperature, the density of preexisting dislocation lines and loops can be dramatically reduced with virtually no change of the overall sample geometry and essentially no permanent plastic strain. This “cyclic healing” of the metal crystal leads to significant strengthening through dramatic reductions in dislocation density, in distinct contrast to conventional cyclic strain hardening mechanisms arising from increases in dislocation density and interactions among defects in microcrystalline and macrocrystalline metals and alloys. Our real-time, in situ transmission electron microscopy observations of tensile tests reveal that pinned dislocation lines undergo shakedown during cyclic straining, with the extent of dislocation unpinning dependent on the amplitude, sequence, and number of strain cycles. Those unpinned mobile dislocations moving close enough to the free surface of the thin specimens as a result of such repeated straining are then further attracted to the surface by image forces that facilitate their egress from the crystal. These results point to a versatile pathway for controlled mechanical annealing and defect engineering in submicrometer-sized metal crystals, thereby obviating the need for thermal annealing or significant plastic deformation that could cause change in shape and/or dimensions of the specimen.
Nature Communications | 2017
Zhang-Jie Wang; Qing-Jie Li; Yao Li; Longchao Huang; L. Lu; Ming Dao; Ju Li; E. Ma; S. Suresh; Zhi-Wei Shan
Coherent twin boundaries (CTBs) are internal interfaces that can play a key role in markedly enhancing the strength of metallic materials while preserving their ductility. They are known to accommodate plastic deformation primarily through their migration, while experimental evidence documenting large-scale sliding of CTBs to facilitate deformation has thus far not been reported. We show here that CTB sliding is possible whenever the loading orientation enables the Schmid factors of leading and trailing partial dislocations to be comparable to each other. This theoretical prediction is confirmed by real-time transmission electron microscope experimental observations during uniaxial deformation of copper pillars with different orientations and is further validated at the atomic scale by recourse to molecular dynamics simulations. Our findings provide mechanistic insights into the evolution of plasticity in heavily twinned face-centered cubic metals, with the potential for optimizing mechanical properties with nanoscale CTBs in material design.Coherent twin boundaries (CTBs) in face-centered cubic metals are usually considered unable to slide at room temperature. Here, the authors use in situ transmission electron microscopy and molecular dynamics to show CTB sliding in copper nanopillars when leading and trailing partial dislocations have similar Schmid factors.
international symposium on the physical and failure analysis of integrated circuits | 2009
Zhang-Jie Wang; B. Sun; Longchao Huang; Gang Liu; Xiangdong Ding; Jun Sun
The stress relaxation behavior of copper thin films in electro-thermo-mechanical multiple fields has been studied by a developed wafer-curvature method. Experimental results reveal that the electromigration plays an important role in the relaxation process. At tensile stress state, coupled surface diffusion and grain boundary diffusion are the dominant mechanisms even at low temperature. In addition, at compressive stress state, the stress relaxation is split into two stages: a fast stress relaxation dominated by coble-creep and a slow stress relaxation dominated by hillock formation. In multiple fields, the stress relaxation both at tensile stress and compressive stress state shows obvious difference from that in thermo-mechanical field.
Acta Materialia | 2012
Zhang-Jie Wang; Zhi-Wei Shan; Ju Li; Jun Sun; E. Ma