Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhanju Lin is active.

Publication


Featured researches published by Zhanju Lin.


Science of The Total Environment | 2017

Effects of local factors and climate on permafrost conditions and distribution in Beiluhe basin, Qinghai-Tibet Plateau, China

Guoan Yin; Fujun Niu; Zhanju Lin; Jing Luo; Minghao Liu

Beiluhe basin is underlain by warm and ice-rich permafrost, and covered by vegetation and soils characteristic of the Qinghai-Tibet Plateau. A field monitoring network was established to investigate permafrost conditions and to assess potential impacts of local factors and climate change. This paper describes the spatial variations in permafrost conditions from instrumented boreholes, controlling environmental factors, and recent thermal evolution of permafrost in the basin. The study area was divided into 10 ecotypes using satellite imagery based classification. The field investigations and cluster analysis of ground temperatures indicated that permafrost underlies most of the ground in swamp meadow, undisturbed alpine meadow, degrading alpine meadow, and desert alpine grassland, but is absent in other cover types. Permafrost-ecotope relations examined over a 2-year (2014-2016) period indicated that: (i) ground surface temperatures varied largely among ecotopes; (ii) annual mean ground temperatures ranged from -1.5 to 0°C in permafrost, indicating sensitive permafrost conditions; (iii) active-layer thicknesses ranged from 1.4m to 3.4m; (iv) ground ice content at the top of permafrost is high, but the active-layer soil is relatively dry. Long-term climate warming has driven thermal changes to permafrost, but ground surface characteristics and soil moisture content strongly influence the ground thermal state. These factors control local-scale spatial variations in permafrost conditions. The warm permafrost in the basin is commonly in thermal disequilibrium, and is sensitive to future climate change. Active-layer thicknesses have increased by at least 42cm and the mean annual ground temperatures have increased by up to 0.2°C in the past 10years over the basin. A permafrost distribution map was produced based on ecotypes, suggesting that permafrost underlies 64% of the study region.


Science China-earth Sciences | 2015

Long-term thermal regimes of the Qinghai-Tibet Railway embankments in plateau permafrost regions

Fujun Niu; Minghao Liu; Guodong Cheng; Zhanju Lin; Jing Luo; Guoan Yin

Ten years of ground temperature data (2003–2013) indicate that the long-term thermal regimes within embankments of the Qinghai-Tibet Railway (QTR) vary significantly with different embankment structures. Obvious asymmetries exist in the ground temperature fields within the traditional embankment (TE) and the crushed-rock basement embankment (CRBE). Measurements indicate that the TE and CRBE are not conducive to maintaining thermal stability. In contrast, the ground temperature fields of both the crushed-rock sloped embankment (CRSE) and the U-shaped crushed-rock embankment (UCRE) were symmetrical. However, the UCRE gave better thermal stability than the CRSE because slow warming of deep permafrost was observed under the CRSE. Therefore, the UCRE has the best long-term effect of decreasing ground temperature and improving the symmetry of the temperature field. More generally, it is concluded that construction using the cooling-roadbed principle meets the design requirements for long-term stability of the railway and for train transport speeds of 100 km h−1. However, temperature differences between the two shoulders, which exist in all embankments shoulders, may cause potential uneven settlement and might require maintenance.


Arctic, Antarctic, and Alpine Research | 2014

Morphological Characteristics of Thermokarst Lakes along the Qinghai-Tibet Engineering Corridor

Fujun Niu; Jing Luo; Zhanju Lin; Minhao Liu; Guoan Yin

Abstract In order to determine the distribution and morphometric characteristics of thermokarst lakes on the Qinghai-Tibet Plateau, SPOT-5 satellite images were acquired from the Chumaerhe High Plateau to Beiluhe Basin within a 10-km-wide corridor along the Qinghai-Tibet Railway. A total of 2163 water bodies, having a total area of 1.09 × 107 m2, were identified in the study area using unsupervised classification and image interpretation. Several shape metrics (area, perimeter, circularity index, elongation index, orientation of major axis, and curvature of lake shoreline) were determined for lakes from the imagery, and bathymetric profiles of lake bottoms were derived using ground-penetrating radar. The results highlighted significant morphometric differences between lakes larger than 5000 m2 among three subregions: the Chumaerhe High Plain (CHP), the Hoh Xil Hill region (HXR), and the Beluhe Basin region (BBR). The lakes in CHP usually have a more regular outline and smooth lake bottoms, while the lakes in HXR often have the greatest depths and the most complex shorelines. The most elongated and largest lakes were typically in BBR. Other than a minor NE-SE peak in HXR and BBR, the major axis orientation for lakes in the three subregions is mostly ENE-WSW. The differences in lake morphology between the three subregions are associated with differences in ground-ice content, local relief, and topography. The dominant factors controlling the development of orientated thermokarst lakes in the region are the prevailing summer wind direction and solar insolation.


Science of The Total Environment | 2017

Impact of a thermokarst lake on the soil hydrological properties in permafrost regions of the Qinghai-Tibet Plateau, China

Zeyong Gao; Fujun Niu; Yibo Wang; Jing Luo; Zhanju Lin

The formation of thermokarst lakes can degrade alpine meadow ecosystems through changes in soil water and heat properties, which might have an effect on the regional surface water and groundwater processes. In this study, a typical thermokarst lake was selected in the Qinghai-Tibet Plateau (QTP), and the ecological index (SL) was used to divide the affected areas into extremely affected, severely affected, medium-affected, lightly affected, and non-affected areas, and soil hydrological properties, including saturated hydraulic conductivity and soil water-holding capacity, were investigated. The results showed that the formation of a thermokarst lake can lead to the degradation of alpine meadows, accompanied by a change in the soil physiochemical and hydrological properties. Specifically, the soil structure turned towards loose soil and the soil nutrients decreased from non-affected areas to severely affected areas, but the soil organic matter and available potassium increased slightly in the extremely affected areas. Soil saturated hydraulic conductivity showed a 1.7- to 4.1-fold increase in the lake-surrounding areas, and the highest value (401.9cmd-1) was detected in the severely affected area. Soil water-holding capacity decreased gradually during the transition from the non-affected areas to the severely affected areas, but it increased slightly in the extremely affected areas. The principal component analysis showed that the plant biomass was vital to the changes in soil hydrological properties. Thus, the vegetation might serve as a link between the thermokarst lake and soil hydrological properties. In this particular case, it was concluded that the thermokarst lake adversely affected the regional hydrological services in the alpine ecosystem. These results would be useful for describing appropriate hydraulic parameters with the purpose of modeling soil water transportation more accurately in the Qinghai-Tibet Plateau.


Scientific Reports | 2016

A naturally-occurring ‘cold earth’ spot in Northern China

Fujun Niu; Guodong Cheng; Yonghong Niu; Mingyi Zhang; Jing Luo; Zhanju Lin

Permafrost is determined to a large extent by the Earth’s surface temperature, therefore it distributes mainly in high altitude and latitude regions. However, stable, warm (about −1 °C) permafrost occurs within a scree slope in northern China that is more than 600 km south of the southernmost limit of latitudinal permafrost on the Eurasian Continent. It is at an elevation of only 900 m above sea level (ASL). The area has a mean annual air temperature (MAAT) of 6 to 8 °C. Thermal processes of the scree slope, investigated through field monitoring and numerical simulation, showed that the permafrost is caused by winter air convection within the porous rock deposits and is stable as air convection does not occur in summer time. The deposit is covered by a 30-cm-thick peaty soil layer dated (carbon C-14) to between 1,000 to 1,600 years ago. The layer also contributes to the permafrost’s existence due to the peat’s thermal conductivity offset when frozen and thawed. The existence of permafrost under such warm climatic conditions confirms the effectiveness of using crushed rock layer as basement or slope cover to protect the warm permafrost subgrade of the recently-constructed Qinghai-Tibet Railway (QTR), even under the predicted climate warming conditions.


Geosphere | 2016

Development of a thermokarst lake and its thermal effects on permafrost over nearly 10 yr in the Beiluhe Basin, Qinghai-Tibet Plateau

Zhanju Lin; Jing Luo; Fujun Niu

The thermal influence of a thermokarst lake on permafrost in the Beiluhe Basin of the Qinghai-Tibet Plateau was examined over nearly 10 yr (2006–2014), and lake development involved both downward and lateral heat transfers. Downward heat transfer rapidly thawed 8 m of permafrost beneath the lake bottom center, forming a through talik (i.e., year-round unfrozen ground in permafrost that is open to top and unfrozen layers beneath permafrost) by October 2008. Lateral heat transfer resulted in permafrost temperatures and permafrost table depths at the lakeshore that decreased with distance from the lake. In 2014, the maximum differences in the mean annual ground temperature and permafrost table depth within 75 m of the lake were 0.4 °C and 0.8 m, respectively. The horizontal extent of the talik has expanded gradually from the lake center to the lakeshore. The development of the thermokarst lake on the Qinghai-Tibet Plateau is discussed in terms of four stages, initiation, development, stabilization, and termination, resulting from changes in the surface energy balance.


Science of The Total Environment | 2018

Evaluation of thermokarst lake water balance in the Qinghai–Tibet Plateau via isotope tracers

Zeyong Gao; Fujun Niu; Zhanju Lin; Jing Luo; Guoan Yin; Yibo Wang

Thermokarst lakes are a ubiquitous landscape feature, which widely distributed in the pan-arctic and some low latitude regions, and are associated with regional hydrological processes. The studies were taken to obtain a better understanding of the water balance of thermokarst lakes in the Qinghai-Tibet Plateau (QTP) in order to gain insight of the regional hydrological cycle. The characteristics of the stable isotopes δ 18O and δ D were investigated in precipitation, permafrost meltwater, and thermokarst lake water in the continuous permafrost region of the QTP and analyzed the lake water balance using the isotope mass model. The results showed that the δ D-δ 18O relationship in the thermokarst lakes (δ D = 5.45 δ 18O - 18.95) differed from that of the local precipitation (δ D = 8.30 δ 18O + 18.49) and permafrost meltwater (δ D = 5.78 δ 18O - 23.41), and the mean isotope compositions in the thermokarst lakes were -7.2‰ in δ 18O and -58.0‰ in δ D. The more positive isotope signals in thermokarst lakes than in the precipitation and permafrost meltwater revealed that the lakes had experienced stronger isotope enrichment. Additionally, the evaporation-to-inflow ratio (E/I) values were < 1 in most of the thermokarst lakes (84%), which might be explained by the recent expansion of the lake surfaces. However, 16% of the thermokarst lakes had shrunk, owing to thermokarst erosion, lateral expansion as the temperature increases, and lower recharge volume. Moreover, precipitation on the lake surface was only 14-18% of the inflow volume in the thermokarst lakes, and the surface-subsurface inflow and permafrost meltwater are very important for recharging the lakes and maintaining the water balance. The results of this study provide a comprehensive understanding of the influence of climate warming on hydrological processes in the permafrost regions in the QTP.


Journal of Mountain Science | 2018

Variations in the northern permafrost boundary over the last four decades in the Xidatan region, Qinghai–Tibet Plateau

Jing Luo; Fujun Niu; Zhanju Lin; Minghao Liu; Guoan Yin

The distribution and variations of permafrost in the Xidatan region, the northern permafrost boundary of the Qinghai-Tibet Plateau, were examined and analyzed using ground penetrating radar (GPR), borehole drilling, and thermal monitoring data. Results from GPR profiles together with borehole verification indicate that the lowest elevation limit of permafrost occurrence is 4369 m above sea level in 2012. Compared to previous studies, the maximal rise of permafrost limit is 28 m from 1975 to 2012. The total area of permafrost in the study region has been decreased by 13.8%. One of the two previously existed permafrost islands has disappeared and second one has reduced by 76% in area during the past ~40 years. In addition, the ground temperature in the Xidatan region has increased from 2012 to 2016, with a mean warming rate of ~0.004°C a−1 and ~0.003°C a−1 at the depths of 6 and 15 m, respectively. The rising of permafrost limit in the Xidatan region is mainly due to global warming. However, some non-climatic factors such as hydrologic processes and anthropic disturbances have also induced permafrost degradation. If the air temperature continues to increase, the northern permafrost boundary in the Qinghai-Tibet Plateau may continue rising in the future.


Permafrost and Periglacial Processes | 2010

Thermal regime of a thermokarst lake and its influence on permafrost, Beiluhe Basin, Qinghai-Tibet Plateau

Zhanju Lin; Fujun Niu; Zhiying Xu; Jian Xu; Ping Wang


Geomorphology | 2011

Characteristics of thermokarst lakes and their influence on permafrost in Qinghai–Tibet Plateau

Fujun Niu; Zhanju Lin; Hua Liu; Jiahao Lu

Collaboration


Dive into the Zhanju Lin's collaboration.

Top Co-Authors

Avatar

Fujun Niu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jing Luo

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Minghao Liu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Guoan Yin

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jiahao Lu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Hua Liu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zeyong Gao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Guodong Cheng

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge