Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhanqiang Liu is active.

Publication


Featured researches published by Zhanqiang Liu.


Materials | 2016

Quantification of Microstructural Features and Prediction of Mechanical Properties of a Dual-Phase Ti-6Al-4V Alloy

Dong Yang; Zhanqiang Liu

Ti-6Al-4V titanium alloy milling has been frequently used in aviation/aerospace industries. Application environments put forward high requirements to create a desired proportion of the constituent phases and fine grain size for optimum mechanical properties of the machined workpiece. However, quantifying microstructural features of dual-phase (α + β) Ti-6Al-4V titanium alloy is difficult due to its irregular geometry and large dimension span. In this paper, a novel scanning electron microscope (SEM) image processing method was proposed to identify the content of constituent phases of materials. The new approach is based on the fact that the constituent phases of Ti-6Al-4V titanium alloy show different gray levels in digital images. On the basis of the processed image, distribution and average values of grain sizes were calculated directly using Image-Pro Plus software. By the proposed method, sensitivity of microstructural changes to milling parameters is analyzed and the stress-strain behavior for two ductile phase alloys is developed. Main conclusions are drawn that Ti-6Al-4V titanium alloy milling induces a high content of β phase and small grain size on the machined surface. The maximum measured values of change rate of β phase, grain refinement rate at the machined surface, and thickness of the deformation layer are 141.1%, 47.2%, and 12.3 μm, respectively. Thickness of the deformed layer and grain refinement rate decreased distinctly with the increase of cutting speed, but increased with the increase of the feed rate. The parameter of the depth of cut played a positive role in increasing the thickness of the deformed layer, while opposite to the grain refinement rate. For the variation of the change rate of the β phase at the machined surface, depth of cut is the foremost factor among the three studied parameters. Values of yield strength varied from 889–921 MPa with the change of content of the β phase from 30%–45%.


Materials | 2018

Stress-Strain Curves and Modified Material Constitutive Model for Ti-6Al-4V over the Wide Ranges of Strain Rate and Temperature

Xin Hou; Zhanqiang Liu; Bing Wang; Woyun Lv; Xiaoliang Liang; Yang Hua

The mechanical properties of Ti-6Al-4V alloy are sensitive to strain rate and temperature load. The finite element simulation results of high-speed machining Ti-6Al-4V alloy depend on the accurate description of dynamic deformation. However, it is hard to describe the flow stress behavior in current constitutive models in a complex high-speed machining process for Ti-6Al-4V alloy. In this paper, the stress-strain curves of Ti-6Al-4V alloy under the wide ranges of strain rate and temperature are obtained by high-velocity uniaxial impact tests. The apparent coupling between temperature and strain is observed, which proves that the temperature is dependent on a hardening effect for Ti-6Al-4V alloy. A function describing the coupling between temperature and strain is then introduced into the modification for the original Johnson-Cook (JC) constitutive model. The maximum deviation between the predicted data from using the proposed modified JC constitutive model and experimental data is reduced from 10.43% to 4.19%. It can be concluded that the modified JC constitutive model is more suitable to describe the temperature-dependent hardening effect, which provides strong support for accurate finite element simulation of high-speed machining Ti-6Al-4V alloy.


Materials | 2017

Swept Mechanism of Micro-Milling Tool Geometry Effect on Machined Oxygen Free High Conductivity Copper (OFHC) Surface Roughness

Zhenyu Shi; Zhanqiang Liu; Yuchao Li; Yang Qiao

Cutting tool geometry should be very much considered in micro-cutting because it has a significant effect on the topography and accuracy of the machined surface, particularly considering the uncut chip thickness is comparable to the cutting edge radius. The objective of this paper was to clarify the influence of the mechanism of the cutting tool geometry on the surface topography in the micro-milling process. Four different cutting tools including two two-fluted end milling tools with different helix angles of 15° and 30° cutting tools, as well as two three-fluted end milling tools with different helix angles of 15° and 30° were investigated by combining theoretical modeling analysis with experimental research. The tool geometry was mathematically modeled through coordinate translation and transformation to make all three cutting edges at the cutting tool tip into the same coordinate system. Swept mechanisms, minimum uncut chip thickness, and cutting tool run-out were considered on modeling surface roughness parameters (the height of surface roughness Rz and average surface roughness Ra) based on the established mathematical model. A set of cutting experiments was carried out using four different shaped cutting tools. It was found that the sweeping volume of the cutting tool increases with the decrease of both the cutting tool helix angle and the flute number. Great coarse machined surface roughness and more non-uniform surface topography are generated when the sweeping volume increases. The outcome of this research should bring about new methodologies for micro-end milling tool design and manufacturing. The machined surface roughness can be improved by appropriately selecting the tool geometrical parameters.


Materials | 2018

Influences of Cutting Speed and Material Mechanical Properties on Chip Deformation and Fracture during High-Speed Cutting of Inconel 718

Bing Wang; Zhanqiang Liu; Xin Hou; Jinfu Zhao

The paper aims to investigate the influences of material constitutive and fracture parameters in addition to cutting speed on chip formation during high-speed cutting of Inconel 718. Finite element analyses for chip formation are conducted with Johnson–Cook constitutive and fracture models. Meanwhile, experiments of high-speed orthogonal cutting are performed to verify the simulation results with cutting speeds ranging from 50 m/min to 7000 m/min. The research indicates that the chip morphology transforms from serrated to fragmented at the cutting speed of 7000 m/min due to embrittlement of the workpiece material under ultra-high cutting speeds. The parameter of shear localization sensitivity is put forward to describe the influences of material mechanical properties on serrated chip formation. The results demonstrate that the effects of initial yield stress and thermal softening coefficient on chip shear localization are much more remarkable than the other constitutive parameters. For the material fracture parameters, the effects of initial fracture strain and exponential factor of stress state on chip shear localization are more much prominent. This paper provides guidance for controlling chip formation through the adjustment of material mechanical properties and the selection of appropriate cutting parameters.


Materials | 2018

Experimental Investigation of Principal Residual Stress and Fatigue Performance for Turned Nickel-Based Superalloy Inconel 718

Yang Hua; Zhanqiang Liu

Residual stresses of turned Inconel 718 surface along its axial and circumferential directions affect the fatigue performance of machined components. However, it has not been clear that the axial and circumferential directions are the principle residual stress direction. The direction of the maximum principal residual stress is crucial for the machined component service life. The present work aims to focuses on determining the direction and magnitude of principal residual stress and investigating its influence on fatigue performance of turned Inconel 718. The turning experimental results show that the principal residual stress magnitude is much higher than surface residual stress. In addition, both the principal residual stress and surface residual stress increase significantly as the feed rate increases. The fatigue test results show that the direction of the maximum principal residual stress increased by 7.4%, while the fatigue life decreased by 39.4%. The maximum principal residual stress magnitude diminished by 17.9%, whereas the fatigue life increased by 83.6%. The maximum principal residual stress has a preponderant influence on fatigue performance as compared to the surface residual stress. The maximum principal residual stress can be considered as a prime indicator for evaluation of the residual stress influence on fatigue performance of turned Inconel 718.


Materials | 2018

Effects of Cutting Edge Microgeometry on Residual Stress in Orthogonal Cutting of Inconel 718 by FEM

Qi Shen; Zhanqiang Liu; Yang Hua; Jinfu Zhao; Woyun Lv; Aziz Ul Hassan Mohsan

Service performance of components such as fatigue life are dramatically influenced by the machined surface and subsurface residual stresses. This paper aims at achieving a better understanding of the influence of cutting edge microgeometry on machined surface residual stresses during orthogonal dry cutting of Inconel 718. Numerical and experimental investigations have been conducted in this research. The cutting edge microgeometry factors of average cutting edge radius S¯, form-factor K, and chamfer were investigated. An increasing trend for the magnitudes of both tensile and compressive residual stresses was observed by using larger S¯ or introducing a chamfer on the cutting edges. The ploughing depth has been predicted based on the stagnation zone. The increase of ploughing depth means that more material was ironed on the workpiece subsurface, which resulted in an increase in the compressive residual stress. The thermal loads were leading factors that affected the surface tensile residual stress. For the unsymmetrical honed cutting edge with K = 2, the friction between tool and workpiece and tensile residual stress tended to be high, while for the unsymmetrical honed cutting edge with K = 0.5, the high ploughing depth led to a higher compressive residual stress. This paper provides guidance for regulating machine-induced residual stress by edge preparation.


Materials | 2018

Investigation of Cutting Temperature during Turning Inconel 718 with (Ti,Al)N PVD Coated Cemented Carbide Tools

Jinfu Zhao; Zhanqiang Liu; Qi Shen; Bing Wang; Qingqing Wang

Physical Vapor Deposition (PVD) Ti1−xAlxN coated cemented carbide tools are commonly used to cut difficult-to-machine super alloy of Inconel 718. The Al concentration x of Ti1−xAlxN coating can affect the coating microstructure, mechanical and thermo-physical properties of Ti1−xAlxN coating, which affects the cutting temperature in the machining process. Cutting temperature has great influence on the tool life and the machined surface quality. In this study, the influences of PVD (Ti,Al)N coated cemented carbide tools on the cutting temperature were analyzed. Firstly, the microstructures of PVD Ti0.41Al0.59N and Ti0.55Al0.45N coatings were inspected. The increase of Al concentration x enhanced the crystallinity of PVD Ti1−xAlxN coatings without epitaxy growth of TiAlN crystals. Secondly, the mechanical and thermo-physical properties of PVD Ti0.41Al0.59N and Ti0.55Al0.45N coated tools were analyzed. The pinning effects of coating increased with the increasing of Al concentration x, which can decrease the friction coefficient between the PVD Ti1−xAlxN coated cemented carbide tools and the Inconel 718 material. The coating hardness and thermal conductivity of Ti1−xAlxN coatings increased with the increase of Al concentration x. Thirdly, the influences of PVD Ti1−xAlxN coated tools on the cutting temperature in turning Inconel 718 were analyzed by mathematical analysis modelling and Lagrange simulation methods. Compared with the uncoated tools, PVD Ti0.41Al0.59N coated tools decreased the heat generation as well as the tool temperature to reduce the thermal stress generated within the tools. Lastly, the influences of Ti1−xAlxN coatings on surface morphologies of the tool rake faces were analyzed. The conclusions can reveal the influences of PVD Ti1−xAlxN coatings on cutting temperature, which can provide guidance in the proper choice of Al concentration x for PVD Ti1−xAlxN coated tools in turning Inconel 718.


Smart Materials and Structures | 2018

Effect of cutting parameters on strain hardening of nickel–titanium shape memory alloy

Guijie Wang; Zhanqiang Liu; Xing Ai; Weimin Huang; Jintao Niu


Materials and Corrosion-werkstoffe Und Korrosion | 2018

Effect of machining-induced surface integrity on the corrosion behavior of Al-Li alloy 2A97 in sodium chloride solution

Jintao Niu; Zhanqiang Liu; Bing Wang; Yang Hua; Guijie Wang


Materials Research Express | 2018

High-pressure coolant effect on the surface integrity of machining titanium alloy Ti-6Al-4V: a review

Wentao Liu; Zhanqiang Liu

Collaboration


Dive into the Zhanqiang Liu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge