Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhao-Hui Gu is active.

Publication


Featured researches published by Zhao-Hui Gu.


Nature Genetics | 2011

Exome sequencing identifies somatic mutations of DNA methyltransferase gene DNMT3A in acute monocytic leukemia

Xiao-Jing Yan; Jie Xu; Zhao-Hui Gu; Chun-Ming Pan; Gang Lu; Yang Shen; Jing-Yi Shi; Yong-Mei Zhu; Lin Tang; Xiao-Wei Zhang; Wen-Xue Liang; Jian-Qing Mi; Huai-Dong Song; Ke-Qin Li; Zhu Chen; Sai-Juan Chen

Abnormal epigenetic regulation has been implicated in oncogenesis. We report here the identification of somatic mutations by exome sequencing in acute monocytic leukemia, the M5 subtype of acute myeloid leukemia (AML-M5). We discovered mutations in DNMT3A (encoding DNA methyltransferase 3A) in 23 of 112 (20.5%) cases. The DNMT3A mutants showed reduced enzymatic activity or aberrant affinity to histone H3 in vitro. Notably, there were alterations of DNA methylation patterns and/or gene expression profiles (such as HOXB genes) in samples with DNMT3A mutations as compared with those without such changes. Leukemias with DNMT3A mutations constituted a group of poor prognosis with elderly disease onset and of promonocytic as well as monocytic predominance among AML-M5 individuals. Screening other leukemia subtypes showed Arg882 alterations in 13.6% of acute myelomonocytic leukemia (AML-M4) cases. Our work suggests a contribution of aberrant DNA methyltransferase activity to the pathogenesis of acute monocytic leukemia and provides a useful new biomarker for relevant cases.


Blood | 2011

Gene mutation patterns and their prognostic impact in a cohort of 1185 patients with acute myeloid leukemia

Yang Shen; Yong-Mei Zhu; Xing Fan; Jing-Yi Shi; Qin-Rong Wang; Xiao-Jing Yan; Zhao-Hui Gu; Yan-Yan Wang; Bing Chen; Chun-Lei Jiang; Han Yan; Feifei Chen; Chen Hm; Zhu Chen; Jie Jin; Sai-Juan Chen

To evaluate the prognostic value of genetic mutations for acute myeloid leukemia (AML) patients, we examined the gene status for both fusion products such as AML1 (CBFα)-ETO, CBFβ-MYH11, PML-RARα, and MLL rearrangement as a result of chromosomal translocations and mutations in genes including FLT3, C-KIT, N-RAS, NPM1, CEBPA, WT1, ASXL1, DNMT3A, MLL, IDH1, IDH2, and TET2 in 1185 AML patients. Clinical analysis was mainly carried out among 605 cases without recognizable karyotype abnormalities except for 11q23. Of these 605 patients, 452 (74.7%) were found to have at least 1 mutation, and the relationship of gene mutations with clinical outcome was investigated. We revealed a correlation pattern among NPM1, DNMT3A, FLT3, IDH1, IDH2, CEBPA, and TET2 mutations. Multivariate analysis identified DNMT3A and MLL mutations as independent factors predicting inferior overall survival (OS) and event-free survival (EFS), whereas biallelic CEBPA mutations or NPM1 mutations without DNMT3A mutations conferred a better OS and EFS in both the whole group and among younger patients < 60 years of age. The use of molecular markers allowed us to subdivide the series of 605 patients into distinct prognostic groups with potential clinical relevance.


Nature Genetics | 2015

Exome sequencing identifies somatic mutations of DDX3X in natural killer/T-cell lymphoma

Lu Jiang; Zhao-Hui Gu; Zi-Xun Yan; Xia Zhao; Yin-Yin Xie; Z. Zhang; Chun-Ming Pan; Yuan Hu; Chang-Ping Cai; Ying Dong; Jin-Yan Huang; Li Wang; Yang Shen; G. Meng; Jianfeng Zhou; Jianda Hu; Jin-Fen Wang; Yuan-Hua Liu; Linhua Yang; Feng Zhang; Jianmin Wang; Zhao Wang; Zhi-Gang Peng; Fangyuan Chen; Zi-Min Sun; Hao Ding; Jumei Shi; Jian Hou; Jin-Song Yan; Jing-Yi Shi

Natural killer/T-cell lymphoma (NKTCL) is a malignant proliferation of CD56+ and cytoCD3+ lymphocytes with aggressive clinical course, which is prevalent in Asian and South American populations. The molecular pathogenesis of NKTCL has largely remained elusive. We identified somatic gene mutations in 25 people with NKTCL by whole-exome sequencing and confirmed them in an extended validation group of 80 people by targeted sequencing. Recurrent mutations were most frequently located in the RNA helicase gene DDX3X (21/105 subjects, 20.0%), tumor suppressors (TP53 and MGA), JAK-STAT-pathway molecules (STAT3 and STAT5B) and epigenetic modifiers (MLL2, ARID1A, EP300 and ASXL3). As compared to wild-type protein, DDX3X mutants exhibited decreased RNA-unwinding activity, loss of suppressive effects on cell-cycle progression in NK cells and transcriptional activation of NF-κB and MAPK pathways. Clinically, patients with DDX3X mutations presented a poor prognosis. Our work thus contributes to the understanding of the disease mechanism of NKTCL.


Proceedings of the National Academy of Sciences of the United States of America | 2014

DNMT3A Arg882 mutation drives chronic myelomonocytic leukemia through disturbing gene expression/DNA methylation in hematopoietic cells

Jie Xu; Yue-Ying Wang; Yu-Jun Dai; Wu Zhang; Wei-Na Zhang; Shu-Min Xiong; Zhao-Hui Gu; Kankan Wang; Rong Zeng; Zhu Chen; Sai-Juan Chen

Significance Epigenetic modifications are required for the regulation of hematopoiesis. DNA methyltransferase 3A (DNMT3A), a critical epigenetic modifier responsible for de novo DNA methylation, was reported recently to be a frequently mutated gene in hematopoietic malignancies. However, the role of mutated DNMT3A in hematopoiesis remains largely unknown. Here we show that the Arg882 (R882) mutation of DNMT3A disrupts the normal function of this enzyme and results in chronic myelomonocytic leukemia (CMML) in mice. Meanwhile, the gene expression, DNA methylation, and protein–protein interaction assays suggest that DNMT3A R882 mutation drives CMML by disturbing the transcriptional expression/DNA methylation program and cell-cycle regulation of hematopoietic cells. This study may shed light on the function of DNMT3A mutant in myeloid leukemogenesis. The gene encoding DNA methyltransferase 3A (DNMT3A) is mutated in ∼20% of acute myeloid leukemia cases, with Arg882 (R882) as the hotspot. Here, we addressed the transformation ability of the DNMT3A-Arg882His (R882H) mutant by using a retroviral transduction and bone marrow transplantation (BMT) approach and found that the mutant gene can induce aberrant proliferation of hematopoietic stem/progenitor cells. At 12 mo post-BMT, all mice developed chronic myelomonocytic leukemia with thrombocytosis. RNA microarray analysis revealed abnormal expressions of some hematopoiesis-related genes, and the DNA methylation assay identified corresponding changes in methylation patterns in gene body regions. Moreover, DNMT3A-R882H increased the CDK1 protein level and enhanced cell-cycle activity, thereby contributing to leukemogenesis.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Genomic landscape of CD34+ hematopoietic cells in myelodysplastic syndrome and gene mutation profiles as prognostic markers

Lan Xu; Zhao-Hui Gu; Yang Li; Jin-Li Zhang; Chun-Kang Chang; Chun-Ming Pan; Jing-Yi Shi; Yang Shen; Bing Chen; Yue-Ying Wang; Lu Jiang; Jing Lu; Xin Xu; Jue-Ling Tan; Yu Chen; Wang S; Xiao Li; Zhu Chen; Sai-Juan Chen

Significance Myelodysplastic syndrome (MDS) represents a common hematopoietic disease, often in elderly patients, with heterogeneous clinical phenotypes and complex disease mechanisms. Here, we report on characteristic genome lesions, clonal architecture, and distinct tumor clone expansion patterns in a group of patients with refractory anemia with excess blasts, the MDS subtype with the highest propensity to acute myeloid leukemia. An integrative gene mutation analysis in 196 patients with different MDS subtypes allowed a regulatory network of mutually cooperative or exclusive molecules to be discovered among eight functional categories, whereas the combination of a panel of marker genes of prognostic value with the revised-International Prognostic Scoring System may provide a better stratification system for MDS. Myelodysplastic syndrome (MDS) includes a group of diseases characterized by dysplasia of bone marrow myeloid lineages with ineffective hematopoiesis and frequent evolution to acute myeloid leukemia (AML). Whole-genome sequencing was performed in CD34+ hematopoietic stem/progenitor cells (HSPCs) from eight cases of refractory anemia with excess blasts (RAEB), the high-risk subtype of MDS. The nucleotide substitution patterns were found similar to those reported in AML, and mutations of 96 protein-coding genes were identified. Clonal architecture analysis revealed the presence of subclones in six of eight cases, whereas mutation detection of CD34+ versus CD34− cells revealed heterogeneity of HSPC expansion status. With 39 marker genes belonging to eight functional categories, mutations were analyzed in 196 MDS cases including mostly RAEB (n = 89) and refractory cytopenia with multilineage dysplasia (RCMD) (n = 95). At least one gene mutation was detected in 91.0% of RAEB, contrary to that in RCMD (55.8%), suggesting a higher mutational burden in the former group. Gene abnormality patterns differed between MDS and AML, with mutations of activated signaling molecules and NPM1 being rare, whereas those of spliceosome more common, in MDS. Finally, gene mutation profiles also bore prognostic value in terms of overall survival and progression free survival.


EBioMedicine | 2015

Mutations of Epigenetic Modifier Genes as a Poor Prognostic Factor in Acute Promyelocytic Leukemia Under Treatment With All-Trans Retinoic Acid and Arsenic Trioxide

Yang Shen; Ya-Kai Fu; Yong-Mei Zhu; Yinjun Lou; Zhao-Hui Gu; Jing-Yi Shi; Bing Chen; Chao Chen; Hong-Hu Zhu; Jiong Hu; Wei-Li Zhao; Jian-Qing Mi; Li Chen; Hongming Zhu; Zhi-Xiang Shen; Jie Jin; Zhen-Yi Wang; Junmin Li; Zhu Chen; Sai-Juan Chen

Background Acute promyelocytic leukemia (APL) is a model for synergistic target cancer therapy using all-trans retinoic acid (ATRA) and arsenic trioxide (ATO), which yields a very high 5-year overall survival (OS) rate of 85 to 90%. Nevertheless, about 15% of APL patients still get early death or relapse. We performed this study to address the possible impact of additional gene mutations on the outcome of APL. Methods We included a consecutive series of 266 cases as training group, and then validated the results in a testing group of 269 patients to investigate the potential prognostic gene mutations, including FLT3-ITD or -TKD, N-RAS, C-KIT, NPM1, CEPBA, WT1, ASXL1, DNMT3A, MLL (fusions and PTD), IDH1, IDH2 and TET2. Results More high-risk patients (50.4%) carried additional mutations, as compared with intermediate- and low-risk ones. The mutations of epigenetic modifier genes were associated with poor prognosis in terms of disease-free survival in both training (HR = 6.761, 95% CI 2.179–20.984; P = 0.001) and validation (HR = 4.026, 95% CI 1.089–14.878; P = 0.037) groups. Sanz risk stratification was associated with CR induction and OS. Conclusion In an era of ATRA/ATO treatment, both molecular markers and clinical parameter based stratification systems should be used as prognostic factors for APL.


PLOS ONE | 2013

A refined study of FCRL genes from a genome-wide association study for Graves' disease.

Shuang-Xia Zhao; Wei Liu; Ming Zhan; Zhi-Yi Song; Shao-Ying Yang; Li-Qiong Xue; Chun Ming Pan; Zhao-Hui Gu; Bing-Li Liu; Hai-Ning Wang; Liming Liang; Jun Liang; Xiao-Mei Zhang; Guo-Yue Yuan; Changgui Li; Ming-Dao Chen; Chen J; Guan-Qi Gao; Huai-Dong Song

To pinpoint the exact location of the etiological variant/s present at 1q21.1 harboring FCRL1-5 and CD5L genes, we carried out a refined association study in the entire FCRL region in 1,536 patients with Graves’ disease (GD) and 1,516 sex-matched controls by imputation analysis, logistic regression, and cis-eQTL analysis. Among 516 SNPs with P<0.05 in the initial GWAS scan, the strongest signals associated with GD and correlated to FCRL3 expression were located at a cluster of SNPs including rs7528684 and rs3761959. And the allele-specific effects for rs3761959 and rs7528684 on FCRL3 expression level revealed that the risk alleles A of rs3761959 and C of rs7528684 were correlated with the elevated expression level of FCRL3 whether in PBMCs or its subsets, especially in CD19+ B cells and CD8+ T subsets. Next, the combined analysis with 5,300 GD cases and 4,916 control individuals confirmed FCRL3 was a susceptibility gene of GD in Chinese Han populations, and rs3761959 and rs7528684 met the genome-wide association significance level (Pcombined = 2.27×10−12 and 7.11×10−13, respectively). Moreover, the haplotypes with the risk allele A of rs3761959 and risk allele C of rs7528684 were associated with GD risk. Finally, our epigenetic analysis suggested the disease-associated C allele of rs7528684 increased affinity for NF-KB transcription factor. Above data indicated that FCRL3 gene and its proxy SNP rs7528684 may be involved in the pathogenesis of GD by excessive inhibiting B cell receptor signaling and the impairment of suppressing function of Tregs.


Human Molecular Genetics | 2014

Genome-wide association study identifies a novel susceptibility gene for serum TSH levels in Chinese populations.

Ming Zhan; Gang Chen; Chun-Ming Pan; Zhao-Hui Gu; Shuang-Xia Zhao; Wei Liu; Hai-Ning Wang; Xiao-Ping Ye; Hui-Jun Xie; Sha-Sha Yu; Jun Liang; Guan-Qi Gao; Guo-Yue Yuan; Xiao-Mei Zhang; Chun-Lin Zuo; Bin Su; Wei Huang; Guang Ning; Sai-Juan Chen; Chen J; Huai-Dong Song

Thyroid-stimulating hormone (TSH) is a sensitive indicator of thyroid function. High and low TSH levels reflect hypothyroidism and hyperthyroidism, respectively. Even within the normal range, small differences in TSH levels, on the order of 0.5-1.0 mU/l, are associated with significant differences in blood pressure, BMI, dyslipidemia, risk of atrial fibrillation and atherosclerosis. Most of the variance in TSH levels is thought to be genetically influenced. We conducted a genome-wide association study of TSH levels in 1346 Chinese Han individuals. In the replication study, we genotyped four candidate SNPs with the top association signals in an independent isolated Chinese She cohort (n = 3235). We identified a novel serum TSH susceptibility locus within XKR4 at 8q12.1 (rs2622590, Pcombined = 2.21 × 10(-10)), and we confirmed two previously reported TSH susceptibility loci near FOXE1 at 9q22.33 and near CAPZB at 1p36.13, respectively. The rs2622590_T allele at XKR4 and the rs925489_C allele near FOXE1 were correlated with low TSH levels and were found to be nominally associated to patients with papillary thyroid carcinoma (PTC) (OR = 1.41, P= 0.014 for rs2622590_T, and OR = 1.61, P= 0.030 for rs925489_C). The rs2622590 and rs925489 genotypes were also correlated with the expression levels of FOXE1 and XKR4, respectively, in PTC tissues (P = 2.41 × 10(-4) and P= 0.02). Our findings suggest that the SNPs in XKR4 and near FOXE1 are involved in the regulation of TSH levels.


PLOS ONE | 2013

Genetic Heterogeneity of Susceptibility Gene in Different Ethnic Populations: Refining Association Study of PTPN22 for Graves' Disease in a Chinese Han Population

Li-Qiong Xue; Chun-Ming Pan; Zhao-Hui Gu; Shuang-Xia Zhao; Bing Han; Wei Liu; Shao-Ying Yang; Sha-Sha Yu; Yixuan Sun; Jun Liang; Guan-Qi Gao; Xiao-Mei Zhang; Guo-Yue Yuan; Changgui Li; Wen-Hua Du; Gang Chen; Chen J; Huai-Dong Song

In our previous studies, we presumed subtypes of Graves’ disease (GD) may be caused by different major susceptibility genes or different variants of a single susceptibility gene. However, more evidence is needed to support this hypothesis. Single-nucleotide polymorphism (SNP) rs2476601 in PTPN22 is the susceptibility loci of GD in the European population. However, this polymorphism has not been found in Asian populations. Here, we investigate whether PTPN22 is the susceptibility gene for GD in Chinese population and further determine the susceptibility variant of PTPN22 in GD. We conducted an imputation analysis based on the results of our genome-wide association study (GWAS) in 1,536 GD patients and 1,516 control subjects. Imputation revealed that 255 common SNPs on a linkage disequilibrium (LD) block containing PTPN22 were associated with GD (P<0.05). Nine tagSNPs that captured the 255 common variants were selected to be further genotyped in a large cohort including 4,368 GD patients and 4,350 matched controls. There was no significant difference between the nine tagSNPs (P>0.05) in either the genotype distribution or allelic frequencies between patients and controls in the replication study. Although the combined analysis exhibited a weak association signal (P combined = 0.003263 for rs3811021), the false positive report probability (FPRP) analysis indicated it was most likely a false positive finding. Our study did not support an association of common SNPs in PTPN22 LD block with GD in Chinese Han population. This suggests that GD in different ethnic population is probably caused by distinct susceptibility genes.


International Journal of Oncology | 2013

Whole-exome sequencing to identify novel somatic mutations in squamous cell lung cancers.

Cui-Xia Zheng; Zhao-Hui Gu; Bing Han; Rong-Xin Zhang; Chun-Ming Pan; Yi Xiang; Xia-Jun Rong; Xia Chen; Qingyun Li; Huanying Wan

Squamous cell lung cancer is a major histotype of non-small cell lung cancer (NSCLC) that is distinct from lung adenocarcinoma. We used whole-exome sequencing to identify novel non-synonymous somatic mutations in squamous cell lung cancer. We identified 101 single-nucleotide variants (SNVs) including 77 non-synonymous SNVs (67 missense and 10 nonsense mutations) and 11 INDELs causing frameshifts. We also found four SNVs located within splicing sites. We verified 62 of the SNVs (51 missense, 10 nonsense and 1 splicing-site mutation) and 10 of the INDELs as somatic mutations in lung cancer tissue. Sixteen of the mutated genes were also mutated in at least one patient with a different type of lung cancer in the Catalogue of Somatic Mutation in Cancer (COSMIC) database. Four genes (LPHN2, TP53, MYH2 and TGM2) were mutated in approximately 10% of the samples in the COSMIC database. We identified two missense mutations in C10orf137 and MS4A3 that also occurred in other solid-tumor tissues in the COSMIC database. We found another somatic mutation in EP300 that was mutated in 4.2% of the 2,020 solid-tumor samples in the COSMIC database. Taken together, our results implicate TP53, EP300, LPHN2, C10orf137, MYH2, TGM2 and MS4A3 as potential driver genes of squamous cell lung cancer.

Collaboration


Dive into the Zhao-Hui Gu's collaboration.

Top Co-Authors

Avatar

Chun-Ming Pan

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Sai-Juan Chen

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Huai-Dong Song

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Jing-Yi Shi

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Shuang-Xia Zhao

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Wei Liu

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhu Chen

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jun Liang

Xuzhou Medical College

View shared research outputs
Researchain Logo
Decentralizing Knowledge