Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhao-Xun Liang is active.

Publication


Featured researches published by Zhao-Xun Liang.


Journal of Bacteriology | 2008

Catalytic Mechanism of Cyclic Di-GMP-Specific Phosphodiesterase: a Study of the EAL Domain-Containing RocR from Pseudomonas aeruginosa

Feng Rao; Ye Yang; Yaning Qi; Zhao-Xun Liang

EAL domain proteins are the major phosphodiesterases for maintaining the cellular concentration of second-messenger cyclic di-GMP in bacteria. Given the pivotal roles of EAL domains in the regulation of many bacterial behaviors, the elucidation of their catalytic and regulatory mechanisms would contribute to the effort of deciphering the cyclic di-GMP signaling network. Here, we present data to show that RocR, an EAL domain protein that regulates the expression of virulence genes and biofilm formation in Pseudomonas aeruginosa PAO-1, catalyzes the hydrolysis of cyclic di-GMP by using a general base-catalyzed mechanism with the assistance of Mg(2+) ion. In addition to the five essential residues involved in Mg(2+) binding, we propose that the essential residue E(352) functions as a general base catalyst assisting the deprotonation of Mg(2+)-coordinated water to generate the nucleophilic hydroxide ion. The mutation of other conserved residues caused various degree of changes in the k(cat) or K(m), leading us to propose their roles in residue positioning and substrate binding. With functions assigned to the conserved groups in the active site, we discuss the molecular basis for the lack of activity of some characterized EAL domain proteins and the possibility of predicting the phosphodiesterase activities for the vast number of EAL domains in bacterial genomes in light of the catalytic mechanism.


Journal of Biological Chemistry | 2010

YybT Is a Signaling Protein That Contains a Cyclic Dinucleotide Phosphodiesterase Domain and a GGDEF Domain with ATPase Activity

Feng Rao; Rui Yin See; Dongwei Zhang; Delon Chengxu Toh; Qiang Ji; Zhao-Xun Liang

The cyclic dinucleotide c-di-GMP synthesized by the diadenylate cyclase domain was recently discovered as a messenger molecule for signaling DNA breaks in Bacillus subtilis. By searching bacterial genomes, we identified a family of DHH/DHHA1 domain proteins (COG3387) that co-occur with a subset of the diadenylate cyclase domain proteins. Here we report that the B. subtilis protein YybT, a member of the COG3387 family proteins, exhibits phosphodiesterase activity toward cyclic dinucleotides. The DHH/DHHA1 domain hydrolyzes c-di-AMP and c-di-GMP to generate the linear dinucleotides 5′-pApA and 5′-pGpG. The data suggest that c-di-AMP could be the physiological substrate for YybT given the physiologically relevant Michaelis-Menten constant (Km) and the presence of YybT family proteins in the bacteria lacking c-di-GMP signaling network. The bacterial regulator ppGpp was found to be a strong competitive inhibitor of the DHH/DHHA1 domain, suggesting that YybT is under tight control during stringent response. In addition, the atypical GGDEF domain of YybT exhibits unexpected ATPase activity, distinct from the common diguanylate cyclase activity for GGDEF domains. We further demonstrate the participation of YybT in DNA damage and acid resistance by characterizing the phenotypes of the ΔyybT mutant. The novel enzymatic activity and stress resistance together point toward a role for YybT in stress signaling and response.


PLOS Pathogens | 2011

MrkH, a Novel c-di-GMP-Dependent Transcriptional Activator, Controls Klebsiella pneumoniae Biofilm Formation by Regulating Type 3 Fimbriae Expression

Jonathan J. Wilksch; Ji Yang; Abigail Clements; Jacinta L. Gabbe; Kirsty R. Short; Hanwei Cao; Rosalia Cavaliere; Catherine E. James; Cynthia B. Whitchurch; Mark A. Schembri; Mary L. C. Chuah; Zhao-Xun Liang; Odilia L. C. Wijburg; Adam Jenney; Trevor Lithgow; Richard A. Strugnell

Klebsiella pneumoniae causes significant morbidity and mortality worldwide, particularly amongst hospitalized individuals. The principle mechanism for pathogenesis in hospital environments involves the formation of biofilms, primarily on implanted medical devices. In this study, we constructed a transposon mutant library in a clinical isolate, K. pneumoniae AJ218, to identify the genes and pathways implicated in biofilm formation. Three mutants severely defective in biofilm formation contained insertions within the mrkABCDF genes encoding the main structural subunit and assembly machinery for type 3 fimbriae. Two other mutants carried insertions within the yfiN and mrkJ genes, which encode GGDEF domain- and EAL domain-containing c-di-GMP turnover enzymes, respectively. The remaining two isolates contained insertions that inactivated the mrkH and mrkI genes, which encode for novel proteins with a c-di-GMP-binding PilZ domain and a LuxR-type transcriptional regulator, respectively. Biochemical and functional assays indicated that the effects of these factors on biofilm formation accompany concomitant changes in type 3 fimbriae expression. We mapped the transcriptional start site of mrkA, demonstrated that MrkH directly activates transcription of the mrkA promoter and showed that MrkH binds strongly to the mrkA regulatory region only in the presence of c-di-GMP. Furthermore, a point mutation in the putative c-di-GMP-binding domain of MrkH completely abolished its function as a transcriptional activator. In vivo analysis of the yfiN and mrkJ genes strongly indicated their c-di-GMP-specific function as diguanylate cyclase and phosphodiesterase, respectively. In addition, in vitro assays showed that purified MrkJ protein has strong c-di-GMP phosphodiesterase activity. These results demonstrate for the first time that c-di-GMP can function as an effector to stimulate the activity of a transcriptional activator, and explain how type 3 fimbriae expression is coordinated with other gene expression programs in K. pneumoniae to promote biofilm formation to implanted medical devices.


Journal of Bacteriology | 2009

The Functional Role of a Conserved Loop in EAL Domain-Based Cyclic di-GMP-Specific Phosphodiesterase

Feng Rao; Yaning Qi; Hui Shan Chong; Masayo Kotaka; Bin Li; Jinming Li; Julien Lescar; Kai Tang; Zhao-Xun Liang

EAL domain-based cyclic di-GMP (c-di-GMP)-specific phosphodiesterases play important roles in bacteria by regulating the cellular concentration of the dinucleotide messenger c-di-GMP. EAL domains belong to a family of (beta/alpha)(8) barrel fold enzymes that contain a functional active site loop (loop 6) for substrate binding and catalysis. By examining the two EAL domain-containing proteins RocR and PA2567 from Pseudomonas aeruginosa, we found that the catalytic activity of the EAL domains was significantly altered by mutations in the loop 6 region. The impact of the mutations ranges from apparent substrate inhibition to alteration of oligomeric structure. Moreover, we found that the catalytic activity of RocR was affected by mutating the putative phosphorylation site (D56N) in the phosphoreceiver domain, with the mutant exhibiting a significantly smaller Michealis constant (K(m)) than that of the wild-type RocR. Hydrogen-deuterium exchange by mass spectrometry revealed that the decrease in K(m) correlates with a change of solvent accessibility in the loop 6 region. We further examined Acetobacter xylinus diguanylate cyclase 2, which is one of the proteins that contains a catalytically incompetent EAL domain with a highly degenerate loop 6. We demonstrated that the catalytic activity of the stand-alone EAL domain toward c-di-GMP could be recovered by restoring loop 6. On the basis of these observations and in conjunction with the structural data of two EAL domains, we proposed that loop 6 not only mediates the dimerization of EAL domain but also controls c-di-GMP and Mg(2+) ion binding. Importantly, sequence analysis of the 5,862 EAL domains in the bacterial genomes revealed that about half of the EAL domains harbor a degenerate loop 6, indicating that the mutations in loop 6 may represent a divergence of function for EAL domains during evolution.


Analytical Biochemistry | 2009

Enzymatic synthesis of c-di-GMP using a thermophilic diguanylate cyclase

Feng Rao; Swathi Pasunooti; Yinglu Ng; Weichao Zhuo; Lishi Lim; Angeline Weixian Liu; Zhao-Xun Liang

The cyclic dinucleotide c-di-GMP is a widespread bacterial messenger molecule with potential application as a therapeutic agent for treating bacterial infection. Current enzymatic synthesis of c-di-GMP using mesophilic diguanylate cyclase (DGC) proteins suffers from low production yield due to protein instability and strong product inhibition. Here we report the overexpression and characterization of a stand-alone thermophilic diguanylate cyclase domain (tDGC) protein with enhanced thermostability. The product inhibition that severely limited production yield was significantly alleviated by mutation of a conserved residue in the putative regulatory I-site. With the mutant tDGC, we demonstrated that hundreds of milligrams of c-di-GMP can be readily prepared by using the optimized procedures for enzymatic reaction and product purification. The thermophilic enzyme will be a valuable tool for other research laboratories for c-di-GMP synthesis as well as the preparation of c-di-GMP derivatives.


Biochemistry | 2009

A Flavin Cofactor-Binding PAS Domain Regulates c-di-GMP Synthesis in AxDGC2 from Acetobacter xylinum

Yaning Qi; Feng Rao; Zhen Luo; Zhao-Xun Liang

The cytoplasmic protein AxDGC2 regulates cellulose synthesis in the obligate aerobe Acetobacter xylinum by controlling the cellular concentration of the cyclic dinucleotide messenger c-di-GMP. AxDGC2 contains a Per-Arnt-Sim (PAS) domain and two putative catalytic domains (GGDEF and EAL) for c-di-GMP metabolism. We found that the PAS domain of AxDGC2 binds a flavin adenine dinucleotide (FAD) cofactor noncovalently. The redox status of the FAD cofactor modulates the catalytic activity of the GGDEF domain for c-di-GMP synthesis, with the oxidized form exhibiting higher catalytic activity and stronger substrate inhibition. The results suggest that AxDGC2 is a signaling protein that regulates the cellular c-di-GMP level in response to the change in cellular redox status or oxygen concentration. Moreover, several residues predicated to be involved in FAD binding and signal transduction were mutated to examine the impact on redox potential and catalytic activity. Despite the minor perturbation of redox potential and unexpected modification of FAD in one of the mutants, none of the single mutations was able to completely disrupt the transmission of the signal to the GGDEF domain, indicating that the change in the FAD redox state can still trigger structural changes in the PAS domain probably by using substituted hydrogen-bonded water networks. Meanwhile, although the EAL domain of AxDGC2 was found to be catalytically inactive toward c-di-GMP, it was capable of hydrolyzing some phosphodiester bond-containing nonphysiological substrates. Together with the previously reported oxygen-dependent activity of the homologous AxPDEA1, the results provided new insight into relationships among oxygen level, c-di-GMP concentration, and cellulose synthesis in A. xylinum.


Journal of Biological Chemistry | 2011

Binding of Cyclic Diguanylate in the Non-catalytic EAL Domain of FimX Induces a Long-range Conformational Change

Yaning Qi; Mary Lay Cheng Chuah; Xueming Dong; Kailing Xie; Zhen Luo; Kai Tang; Zhao-Xun Liang

FimX is a multidomain signaling protein required for type IV pilus biogenesis and twitching motility in the opportunistic pathogen Pseudomonas aeruginosa. FimX is localized to the single pole of the bacterial cell, and the unipolar localization is crucial for the correct assembly of type IV pili. FimX contains a non-catalytic EAL domain that lacks cyclic diguanylate (c-di-GMP) phosphodiesterase activity. It was shown that deletion of the EAL domain or mutation of the signature EVL motif affects the unipolar localization of FimX. However, it was not understood how the C-terminal EAL domain could influence protein localization considering that the localization sequence resides in the remote N-terminal region of the protein. Using hydrogen/deuterium exchange-coupled mass spectrometry, we found that the binding of c-di-GMP to the EAL domain triggers a long-range (∼ca. 70 Å) conformational change in the N-terminal REC domain and the adjacent linker. In conjunction with the observation that mutation of the EVL motif of the EAL domain abolishes the binding of c-di-GMP, the hydrogen/deuterium exchange results provide a molecular explanation for the mediation of protein localization and type IV pilus biogenesis by c-di-GMP through a remarkable allosteric regulation mechanism.


Acta Crystallographica Section D-biological Crystallography | 2011

The structure and inhibition of a GGDEF diguanylate cyclase complexed with (c-di-GMP)2 at the active site

Chao-Yu Yang; Ko-Hsin Chin; Mary Lay-Cheng Chuah; Zhao-Xun Liang; Andrew H.-J. Wang; Shan-Ho Chou

Cyclic diguanosine monophosphate (c-di-GMP) is a key signalling molecule involved in regulating many important biological functions in bacteria. The synthesis of c-di-GMP is catalyzed by the GGDEF-domain-containing diguanylate cyclase (DGC), the activity of which is regulated by the binding of product at the allosteric inhibitory (I) site. However, a significant number of GGDEF domains lack the RxxD motif characteristic of the allosteric I site. Here, the structure of XCC4471(GGDEF), the GGDEF domain of a DGC from Xanthomonas campestris, in complex with c-di-GMP has been solved. Unexpectedly, the structure of the complex revealed a GGDEF-domain dimer cross-linked by two molecules of c-di-GMP at the strongly conserved active sites. In the complex (c-di-GMP)(2) adopts a novel partially intercalated form, with the peripheral guanine bases bound to the guanine-binding pockets and the two central bases stacked upon each other. Alteration of the residues involved in specific binding to c-di-GMP led to dramatically reduced K(d) values between XCC4471(GGDEF) and c-di-GMP. In addition, these key residues are strongly conserved among the many thousands of GGDEF-domain sequences identified to date. These results indicate a new product-bound form for GGDEF-domain-containing proteins obtained via (c-di-GMP)(2) binding at the active site. This novel XCC4471(GGDEF)-c-di-GMP complex structure may serve as a general model for the design of lead compounds to block the DGC activity of GGDEF-domain-containing proteins in X. campestris or other microorganisms that contain multiple GGDEF-domain proteins.


Journal of Bacteriology | 2011

Unusual Heme-Binding PAS Domain from YybT Family Proteins

Feng Rao; Qiang Ji; Ishin Soehano; Zhao-Xun Liang

YybT family proteins (COG3887) are functionally unknown proteins that are widely distributed among the firmicutes, including the human pathogens Staphylococcus aureus and Listeria monocytogenes. Recent studies suggested that YybT family proteins are crucial for the in vivo survival of bacterial pathogens during host infection. YybT family proteins contain an N-terminal domain that shares minimum sequence homology with Per-ARNT-Sim (PAS) domains. Despite the lack of an apparent residue for heme coordination, the putative PAS domains of BsYybT and GtYybT, two representative members of the YybT family proteins from Bacillus subtilis and Geobacillus thermodenitrificans, respectively, are found to bind b-type heme with 1:1 stoichiometry. Heme binding suppresses the catalytic activity of the DHH/DHHA1 phosphodiesterase domain and the degenerate GGDEF domain. Absorption spectroscopic studies indicate that YybT proteins do not form stable oxyferrous complexes due to the rapid oxidation of the ferrous iron upon O(2) binding. The ferrous heme, however, forms a hexacoordinated complex with carbon monoxide (CO) and a pentacoordinated complex with nitric oxide (NO). The coordination of NO, but not CO, to the heme stimulates the phosphodiesterase activity. These results suggest that YybT family proteins function as stress-signaling proteins for monitoring cellular heme or the NO level by using a heme-binding PAS domain that features an unconventional heme coordination environment.


Journal of the American Chemical Society | 2012

Synthesis of (R)-mellein by a partially reducing iterative polyketide synthase.

Huihua Sun; Chun Loong Ho; Feiqing Ding; Ishin Soehano; Xue-Wei Liu; Zhao-Xun Liang

Mellein and the related 3,4-dihydroisocoumarins are a family of natural products with interesting biological properties. The mechanisms of dihydroisocoumarin biosynthesis remain largely speculative today. Here we report the synthesis of mellein by a partially reducing iterative polyketide synthase (PR-PKS) as a pentaketide product. Remarkably, despite the head-to-tail homology shared with several fungal and bacterial PR-PKSs, the mellein synthase exhibits a distinct keto reduction pattern in the synthesis of the pentaketide. We present evidence to show that the ketoreductase (KR) domain alone is able to recognize and differentiate the polyketide intermediates, which provides a mechanistic explanation for the programmed keto reduction in these PR-PKSs.

Collaboration


Dive into the Zhao-Xun Liang's collaboration.

Top Co-Authors

Avatar

Julien Lescar

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Feng Rao

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Huihua Sun

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Shan-Ho Chou

National Chung Hsing University

View shared research outputs
Top Co-Authors

Avatar

Chong Wai Liew

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Chun Loong Ho

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Ko-Hsin Chin

National Chung Hsing University

View shared research outputs
Top Co-Authors

Avatar

Mary Lay Cheng Chuah

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Rong Kong

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge