Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhao-Yi Wang is active.

Publication


Featured researches published by Zhao-Yi Wang.


PLOS ONE | 2010

ER-α36, a Variant of ER-α, Promotes Tamoxifen Agonist Action in Endometrial Cancer Cells via the MAPK/ERK and PI3K/Akt Pathways

Sheng-Li Lin; Liying Yan; Xin-Tian Zhang; Ju Yuan; Mo Li; Jie Qiao; Zhao-Yi Wang; Qing-Yuan Sun

Background Recently, a novel variant of ER-α, ER-α36 was identified and cloned. ER-α36 lacks intrinsic transcription activity and mainly mediates nongenomic estrogen signaling. Here, we studied the role of nongenomic estrogen signaling pathways mediated by ER-α36 in tamoxifen resistance and agonist action. Methodology The cellular localization of ER-α36 was examined by immunofluorescence in MCF-7 cells and Hec1A cells. MCF-7 breast cancer cells, MCF-7 cells expressing recombinant ER-α36 (MCF-7/ER36), Hec1A endometrial cancer cells and Hec1A cells with siRNA knockdown of ER-α36 (Hec1A/RNAiER36) were treated with 17β-estradial (E2) and tamoxifen (TAM) in the absence and presence of kinase inhibitor U0126 and LY294002. We examined phosphorylation of signaling molecules and the expression of c-Myc by immunoblotting, and tumor cell growth by MTT assay. Conclusions ER variant ER-α36 enhances TAM agonist activity through activation of the membrane-initiated signaling pathways in endometrial cancer, and that ER-α36 is involved in de novo and acquired TAM resistance in breast cancer.


Reproductive Biology and Endocrinology | 2009

A novel variant of ER-alpha, ER-alpha36 mediates testosterone-stimulated ERK and Akt activation in endometrial cancer Hec1A cells.

Sheng-Li Lin; Liying Yan; Xing-Wei Liang; Zhen-Bo Wang; Zhao-Yi Wang; Jie Qiao; Heide Schatten; Qing-Yuan Sun

BackgroundEndometrial cancer is one of the most common gynecologic malignancies and its incidence has recently increased. Experimental and epidemiological data support that testosterone plays an important role in the pathogenesis of endometrial cancer, but the underlying mechanism has not been fully understood. Recently, we identified and cloned a variant of estrogen receptor (ER) alpha, ER-alpha36. The aim of the present study was to investigate the role of ER-alpha36 in testosterone carcinogenesis.MethodsThe cellular localization of ER-alpha36 was determined by immunofluorescence. Hec1A endometrial cancer cells (Hec1A/V) and Hec1A cells with siRNA knockdown of ER-alpha36 (Hec1A/RNAi) were treated with testosterone, ERK and Akt phosphorylation was assessed by Western blot analysis. Furthermore, the kinase inhibitors U0126 and LY294002 and the aromatase inhibitor letrozole were used to elucidate the pathway underlying testosterone-induced activities.ResultsImmunofluorescence shows that ER-alpha36 was localized on the plasma membrane of the both ER-alpha- and androgen receptor-negative endometrial cancer Hec1A cells. Testosterone induced ERK and Akt phosphorylation, which could be abrogated by ER-alpha 36 shRNA knockdown or the kinase inhibitors, U0126 and LY294002, and the aromatase inhibitor letrozole.ConclusionTestosterone induces ERK and Akt phosphorylation via the membrane-initiated signaling pathways mediated by ER-alpha36, suggesting a possible involvement of ER-alpha 36 in testosterone carcinogenesis.


PLOS ONE | 2012

Estrogen Receptor-Alpha 36 Mediates Mitogenic Antiestrogen Signaling in ER-Negative Breast Cancer Cells

Xin-Tian Zhang; Ling Ding; Lianguo Kang; Zhao-Yi Wang

It is prevailingly thought that the antiestrogens tamoxifen and ICI 182, 780 are competitive antagonists of the estrogen-binding site of the estrogen receptor-alpha (ER-α). However, a plethora of evidence demonstrated both antiestrogens exhibit agonist activities in different systems such as activation of the membrane-initiated signaling pathways. The mechanisms by which antiestrogens mediate estrogen-like activities have not been fully established. Previously, a variant of ER-α, EP–α36, has been cloned and showed to mediate membrane-initiated estrogen and antiestrogen signaling in cells only expressing ER-α36. Here, we investigated the molecular mechanisms underlying the antiestrogen signaling in ER-negative breast cancer MDA-MB-231 and MDA-MB-436 cells that express high levels of endogenous ER-α36. We found that the effects of both 4-hydoxytamoxifen (4-OHT) and ICI 182, 780 (ICI) exhibited a non-monotonic, or biphasic dose response curve; antiestrogens at low concentrations, elicited a mitogenic signaling pathway to stimulate cell proliferation while at high concentrations, antiestrogens inhibited cell growth. Antiestrogens at l nM induced the phosphorylation of the Src-Y416 residue, an event to activate Src, while at 5 µM induced Src-Y527 phosphorylation that inactivates Src. Antiestrogens at 1 nM also induced phosphorylation of the MAPK/ERK and activated the Cyclin D1 promoter activity through the Src/EGFR/STAT5 pathways but not at 5 µM. Knock-down of ER-α36 abrogated the biphasic antiestrogen signaling in these cells. Our results thus indicated that ER-α36 mediates biphasic antiestrogen signaling in the ER-negative breast cancer cells and Src functions as a switch of antiestrogen signaling dependent on concentrations of antiestrogens through the EGFR/STAT5 pathway.


PLOS ONE | 2010

ER-α36, a Novel Variant of ER-α, Mediates Estrogen-Stimulated Proliferation of Endometrial Carcinoma Cells via the PKCδ/ERK Pathway

Jing-Shan Tong; Qing-Hua Zhang; Zhen-Bo Wang; Sen Li; Cai-Rong Yang; Xueqi Fu; Yi Hou; Zhao-Yi Wang; Jun Sheng; Qing-Yuan Sun

Background Recently, a variant of ER-α, ER-α36 was identified and cloned. ER-α36 lacks intrinsic transcription activity and mainly mediates non-genomic estrogen signaling. The purpose of this study was to investigate the function and the underlying mechanisms of ER-α36 in growth regulation of endometrial Ishikawa cancer cells. Methods The cellular localization of ER-α36 and ER-α66 were determined by immunofluorescence in the Ishikawa cells. Ishikawa endometrial cancer control cells transfected with an empty expression vector, Ishikawa cells with shRNA knockdown of ER-α36 (Ishikawa/RNAiER36) and Ishikawa cells with shRNA knockdown of ER-α66 (Ishikawa/RNAiER66) were treated with E2 and E2-conjugated to bovine serum albumin (E2-BSA, membrane impermeable) in the absence and presence of different kinase inhibitors HBDDE, bisindolylmaleimide, rottlerin, H89 and U0126. The phosphorylation levels of signaling molecules and cyclin D1/cdk4 expression were examined with Western blot analysis and cell growth was monitored with the MTT assay. Results Immunofluorescence staining of Ishikawa cells demonstrated that ER-α36 was expressed mainly on the plasma membrane and in the cytoplasm, while ER-α66 was predominantly localized in the cell nucleus. Both E2 and E2-BSA rapidly activated PKCδ not PKCα in Ishikawa cells, which could be abrogated by ER-α36 shRNA expression. E2-and E2-BSA-induced ERK phosphorylation required ER-α36 and PKCδ. However, only E2 was able to induce Camp-dependent protein kinase A (PKA) phosphorylation. Furthermore, E2 enhances cyclin D1/cdk4 expression via ER-α36. Conclusion E2 activates the PKCδ/ERK pathway and enhances cyclin D1/cdk4 expression via the membrane-initiated signaling pathways mediated by ER-α36, suggesting a possible involvement of ER-α36 in E2-dependent growth-promoting effects in endometrial cancer cells.


PLOS ONE | 2014

ER-α36-Mediated Rapid Estrogen Signaling Positively Regulates ER-Positive Breast Cancer Stem/Progenitor Cells

Hao Deng; Xin-Tian Zhang; Molin Wang; Hong-Yan Zheng; Lijiang Liu; Zhao-Yi Wang

The breast cancer stem cells (BCSC) play important roles in breast cancer occurrence, recurrence and metastasis. However, the role of estrogen signaling, a signaling pathway important in development and progression of breast cancer, in regulation of BCSC has not been well established. Previously, we identified and cloned a variant of estrogen receptor α, ER-α36, with a molecular weight of 36 kDa. ER-α36 lacks both transactivation domains AF-1 and AF-2 of the 66 kDa full-length ER-α (ER-α66) and mediates rapid estrogen signaling to promote proliferation of breast cancer cells. In this study, we aim to investigate the function and the underlying mechanism of ER-α36-mediated rapid estrogen signaling in growth regulation of the ER-positive breast cancer stem/progenitor cells. ER-positive breast cancer cells MCF7 and T47D as well as the variants with different levels of ER-α36 expression were used. The effects of estrogen on BCSCs abilities of growth, self-renewal, differentiation and tumor-seeding were examined using tumorsphere formation, flow cytometry, indirect immunofluorence staining and in vivo xenograft assays. The underlying mechanisms were also studied with Western-blot analysis. We found that 17-β-estradiol (E2β) treatment increased the population of ER-positive breast cancer stem/progenitor cells while failed to do so in the cells with knocked-down levels of ER-α36 expression. Cells with forced expression of recombinant ER-α36, however, responded strongly to E2β treatment by increasing growth in vitro and tumor-seeding efficiency in vivo. The rapid estrogen signaling via the AKT/GSK3β pathway is involved in estrogen-stimulated growth of ER-positive breast cancer stem/progenitor cells. We concluded that ER-α36-mediated rapid estrogen signaling plays an important role in regulation and maintenance of ER-positive breast cancer stem/progenitor cells.


Oncology Reports | 2012

Involvement of ER-α36, Src, EGFR and STAT5 in the biphasic estrogen signaling of ER-negative breast cancer cells.

Xin-Tian Zhang; Ling Ding; Lianguo Kang; Zhao-Yi Wang

It is well established that estrogen is a potent mitogen in cells expressing estrogen receptors (ER). However, a large body of evidence has demonstrated that the effects of mitogenic estrogen signaling exhibit a non-monotonic or biphasic, dose-response curve; estrogen at low concentrations, elicits a mitogenic signaling pathway to stimulate cell proliferation, while at high concentrations, estrogen inhibits cell growth. The molecular mechanism underlying this paradoxical effect of estrogen on cell proliferation remains largely unknown. Recently, we reported that ER-α36, a variant of ER-α, mediates mitogenic estrogen signaling in ER-negative breast cancer cells. Here, we investigated the molecular mechanisms underlying the biphasic estrogen signaling in MDA-MB-231 and MDA-MB-436 ER-negative breast cancer cells. We found that 17β-estradiol (E2β) at l nM induced the phosphorylation of Src-Y416, an event that activates Src, while at 5 µM failed to induce Src-Y416 phosphorylation but induced Src-Y527 phosphorylation an event that inactivates Src. E2β at 1 nM, but not at 5 µM, also induced phosphorylation of MAPK/ERK and activated Cyclin D1 promoter activity through the Src/EGFR/STAT5 pathway. Knockdown of ER‑α36 abrogated the biphasic estrogen signaling in these cells. Our results thus indicate that in ER-negative breast cancer cells Src functions as a switch in ER‑α36-mediated biphasic estrogen signaling through the EGFR/STAT5 pathway.


American Journal of Obstetrics and Gynecology | 2011

ER-α36, a novel variant of estrogen receptor α, is involved in EGFR-related carcinogenesis in endometrial cancer

Bin-Bin Tu; Sheng-Li Lin; Liying Yan; Zhao-Yi Wang; Qing-Yuan Sun; Jie Qiao

OBJECTIVE To explore the role of estrogen receptor-α36 (ER-α36) in epidermal growth factor receptor (EGFR)-related carcinogenesis in endometrial cancer. STUDY DESIGN The expression of ER-α36, EGFR, and phospho-extracellular signal-regulated kinase was analyzed using immunohistochemistry in endometrial cancer samples. The cellular localization of ER-α36 and EGFR was determined using immunofluorescence in the endometrial cancer Hec1A cells. The level of phospho-extracellular signal-regulated kinase of Hec1A cells was determined using Western blotting after treatment with epidermal growth factor. RESULTS Positive rate of ER-α36 was increased in high-stage (P = .03) and high-grade (P = .224) endometrial cancer; expression of ER-α36 and EGFR exhibited a significant positive correlation (r = 0.334, P = .025) and they showed substantial colocalization on the plasma membrane of glandular cells; phospho-extracellular signal-regulated kinase positive rate in ER-α36 positive group and EGFR positive group was higher than that of ER-α36 negative group (P = .014) and EGFR negative group (P = .016); finally, ER-α36 mediated epidermal growth factor-stimulated extracellular signal-regulated kinase activation in Hec1A cells. CONCLUSION ER-α36 mediates EGFR-related extracellular signal-regulated kinase activation in endometrial cancer.


PLOS ONE | 2014

Disruption of the ER-α36-EGFR/HER2 positive regulatory loops restores tamoxifen sensitivity in tamoxifen resistance breast cancer cells.

Li Yin; Xin-Tian Zhang; Xiu-wu Bian; Yu-Ming Guo; Zhao-Yi Wang

Tamoxifen provided a successful treatment for ER-positive breast cancer for many years. However, most breast tumors develop tamoxifen resistance and are eventually refractory to tamoxifen therapy. The molecular mechanisms underlying development of tamoxifen resistance have not been well established. Recently, we reported that breast cancer cells with high levels of ER-α36, a variant of ER-α, were resistant to tamoxifen and knockdown of ER-α36 expression in tamoxifen resistant cells with the shRNA method restored tamoxifen sensitivity, indicating that gained ER-α36 expression is one of the underlying mechanisms of tamoxifen resistance. Here, we found that tamoxifen induced expression of ER-α36-EGFR/HER2 positive regulatory loops and tamoxifen resistant MCF7 cells (MCF7/TAM) expressed enhanced levels of the loops. Disruption of the ER-α36-EGFR/HER2 positive regulatory loops with the dual tyrosine kinase inhibitor Lapatinib or ER-α36 down-regulator Broussoflavonol B in tamoxifen resistant MCF7 cells restored tamoxifen sensitivity. In addition, we also found both Lapatinib and Broussoflavonol B increased the growth inhibitory activity of tamoxifen in tumorsphere cells derived from MCF7/TAM cells. Our results thus demonstrated that elevated expression of the ER-α36-EGFR/HER2 loops is one of the mechanisms by which ER-positive breast cancer cells escape tamoxifen therapy. Our results thus provided a rational to develop novel therapeutic approaches for tamoxifen resistant patients by targeting the ER-α36-EGFR/HER2 loops.


The Journal of Steroid Biochemistry and Molecular Biology | 2014

ER-α variant ER-α36 mediates antiestrogen resistance in ER-positive breast cancer stem/progenitor cells

Hao Deng; Li Yin; Xin-Tian Zhang; Lijiang Liu; Molin Wang; Zhao-Yi Wang

Accumulating evidence indicates that cancer stem cells (CSC) play important roles in breast cancer occurrence, recurrence and metastasis as well as resistance to therapy. However, the roles of breast cancer stem cells in antiestrogen resistance and the underlying molecular mechanisms have not been well established. Previously, we identified and cloned a novel variant of estrogen receptor α, ER-α36, with a molecular weight of 36kDa. ER-α36 mediates rapid antiestrogen signaling and is highly expressed in ER-positive breast cancer stem/progenitor cells. In this study, we investigated the function and the underlying mechanism of ER-α36-mediated antiestrogen signaling in ER-positive breast cancer stem/progenitor cells. ER-positive breast cancer cells MCF7 and T47D as well as variants with different levels of ER-α36 expression were used. The effects of antiestrogens tamoxifen and ICI 182, 780 on breast CSCs ability of growth, self-renewal, differentiation and tumor seeding were examined using tumorsphere formation, flow cytometry, indirect immunofluorences and in vivo xenograft assays. The underlying mechanisms were also analyzed with Western blot analysis. We found that the cancer stem/progenitor cells enriched from ER-positive breast cancer cells were more resistant to antiestrogens than the bulk cells. Antiestrogens increased the percentages of the stem/progenitor cells from ER-positive breast cancer cell through stimulation of luminal epithelial lineage specific ER-positive breast cancer progenitor cells while failed to do so in the cells with knocked-down levels of ER-α36 expression. Our results thus indicated that ER-α36-mediated antiestrogen signaling such as the PI3K/AKT plays an important role in antiestrogen resistance of ER-positive breast cancer stem/progenitor cells.


PLOS ONE | 2012

A Switch Role of Src in the Biphasic EGF Signaling of ER-Negative Breast Cancer Cells

Xin-Tian Zhang; Jun Meng; Zhao-Yi Wang

It is well established that epidermal growth factor (EGF) is a potent mitogen in cells expressing EGF receptor (EGFR). However, a body of evidence indicated that the effects of mitogenic EGF signaling exhibit a non-monotonic, or biphasic dose response curve; EGF at low concentrations elicits a mitogenic signaling pathway to stimulate cell proliferation while at high concentrations, EGF inhibits cell growth. However, the molecular mechanism underlying this paradoxical effect of EGF on cell proliferation remains largely unknown. Here, we investigated the molecular mechanisms underlying the biphasic EGF signaling in ER-negative breast cancer MDA-MB-231 and MDA-MB-436 cells, both of which express endogenous EGFR. We found that EGF at low concentrations induced the phosphorylation of the Src-Y416 residue, an event to activate Src, while at high concentrations allowed Src-Y527 phosphorylation that inactivates Src. EGF at 10 ng/ml also induced phosphorylation of the MAPK/ERK and activated cyclin D1 promoter activity through the Src/EGFR/STAT5 pathways but not at a higher concentration (500 ng/ml). Our results thus demonstrated that Src functions as a switch of EGF signaling depending on concentrations of EGF.

Collaboration


Dive into the Zhao-Yi Wang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Li Yin

Creighton University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qing-Yuan Sun

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge