Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhao-Ying Liu is active.

Publication


Featured researches published by Zhao-Ying Liu.


Analytical and Bioanalytical Chemistry | 2011

An integrated method for degradation products detection and characterization using hybrid ion trap/time-of-flight mass spectrometry and data processing techniques: Application to study of the degradation products of danofloxacin under stressed conditions

Zhao-Ying Liu; Xiao-Ni Zhou; Hua-Hai Zhang; Leren Wan; Zhi-Liang Sun

AbstractA new strategy using hybrid ion trap/time-of-flight mass spectrometry coupled with high-performance liquid chromatography and post-acquisition data mining techniques was developed and applied to the detection and characterization of degradation products of danofloxacin. The degradation products formed under different forced conditions were separated using an ODS-C18 column with gradient elution. Accurate full-scan MS data were acquired in the first run and processed with the combination of extracted ion chromatograms and LC-UV chromatograms. These processes were able to find accurate molecular masses of possible degradation products. Then, the accurate MS/MS data acquired through data-dependent analysis mode in another run facilitated the structural elucidations of degradation products. As a result, a total of 11 degradation products of danofloxacin were detected and characterized using the developed method. Overall, this analytical strategy enables the acquisition of accurate-mass LC/MS data, search of a variety of degradation products through the post-acquisition processes, and effective structural characterization based on elemental compositions of degradation product molecules and their product ions. The ability to measure degradation products via tandem mass spectrometry coupled with accurate mass measurement, all in only two experimental runs, is one of the most attractive features of this methodology. The results demonstrate that use of the LC/MS-IT-TOF approach appears to be rapid, efficient and reliable in structural characterization of drug degradation products. FigureAn integrated method for degradation product detection and characterization using hybrid ion trap/time-of-flight mass spectrometry coupled with high-performance liquid chromatography (LC/MS-IT-TOF) and post-acquisition data mining techniques


Rapid Communications in Mass Spectrometry | 2013

Identification of sanguinarine metabolites in pig liver preparations by accurate mass measurements using electrospray ionization hybrid ion trap/time-of-flight mass spectrometry

Hua-Hai Zhang; Yong Wu; Zhi-Liang Sun; Zhao-Ying Liu

RATIONALE Sanguinarine (SA) is currently used in veterinary medicine for animal husbandry as a natural component of feed additive Sangrovit. To date, SA metabolism in food-producing animals has not yet been reported. Therefore, the purpose of the present study was to investigate the metabolism of SA in pig liver microsomes and cytosol. METHODS The SA incubations mixtures of microsomes and cytosol were processed by trichloroacetic acid (TCA) and acetonitrile. Then, the samples were analyzed using a sensitive and reliable method based on liquid chromatography combined with hybrid ion trap/time-of-flight mass spectrometry (LC-IT/TOFMS). The structural elucidations of these metabolites were performed by comparing the changes in the accurate molecular masses and product ions generated from precursor ions with those of the parent drug. RESULTS Seven metabolites were identified in pig liver preparations. Dihydrosanguinarine (DHSA, m/z 334) was the main metabolite formed in liver microsomes and the only one in cytosol. One oxidative metabolite and two O-demethylenated metabolites of SA (m/z 320) were found in the TCA-treated microsomal samples. However, SA pseudobase and two additional O-demethylenated metabolites of DHSA (m/z 322) were found only in the acetonitrile-treated microsomal samples. CONCLUSIONS It was demonstrated that different metabolites of SA were identified depending on the acidic or neural extraction conditions. A metabolic pathway of SA in pig was tentatively proposed based on these characterized metabolites and early reports.


Biomedical Chromatography | 2012

Characterization of in vitro metabolites of trimethoprim and diaveridine in pig liver microsomes by liquid chromatography combined with hybrid ion trap/time-of-flight mass spectrometry.

Zhao-Ying Liu; Yong Wu; Zhi-Liang Sun; Leren Wan

Trimethoprim (TMP) and diaveridine (DVD) are used in combination with sulfonamides and sulfaquinoxlaine as an effective antibacterial agent and antiprotozoal agent, respectively, in humans and animals. To gain a better understanding of the metabolism of TMP and DVD in the food-producing animals, the metabolites incubated with liver microsomes of pigs were analyzed for the first time with high-performance liquid chromatography combined with hybrid ion trap/time-of-flight mass spectrometry. Seven TMP-related and six DVD-related metabolites were characterized based on the accurate MS² spectra and known structure of the parent drug, respectively. The metabolites of TMP were identified as two O-demethylation metabolites, a di-O-demethylation metabolite, two N-oxides metabolites, a hydroxylated metabolite on the methylene carbon and a hydroxylated metabolite on the methyl group. DVD was also biotransformed to two O-demethylation metabolites, a di-O-demethylation metabolite, an N-oxide metabolite, a hydroxylation metabolite on the methylene carbon and a hydroxylation metabolite followed by O-demethylation. The results indicate that the two compounds have similar biotransformation pathways in pigs. O-Demethylation was the major metabolic route of TMP and DVD in the pig liver microsomes. The proposed metabolic pathways of TMP and DVD in liver microsomes will provide a basis for further studies of the in vivo metabolism of the two drugs in food-producing animals.


Pharmacological Reports | 2013

Reductive metabolism of the sanguinarine iminium bond by rat liver preparations

Yong Wu; Zhao-Ying Liu; Yan Cao; Xiao-Jun Chen; Jian-Guo Zeng; Zhi-Liang Sun

BACKGROUND Sanguinarine (SA) is a quaternary benzo[c]phenanthridine alkaloid that is mainly present in the Papaveraceae family. SA has been extensively studied because of its antimicrobial, anti-inflammatory, antitumor, antihypertensive, antiproliferative and antiplatelet activities. Metabolic studies demonstrated that SA bioavailability is apparently low, and the main pathway of SA metabolism is iminium bond reduction resulting in dihydrosanguinarine (DHSA) formation. Nevertheless, the metabolic enzymes involved in SA reduction are still not known in detail. Thus, the aim of this study was to investigate the rat liver microsomes and cytosol-induced SA iminium bond reduction, and to examine the effects of cytosol reductase inhibitors on the reductive activity. METHODS DHSA formation was quantified by HPLC. The possible enzymes responsible for DHSA formation were examined using selective individual metabolic enzyme inhibitors. RESULTS When SA was incubated with liver microsomes and cytosol in the absence of NAD(P)H, DHSA, the iminium bond reductive metabolite was formed. The reductase activity of the liver microsomes and cytosol was also enhanced significantly in the presence of NADH. The amount of DHSA formed in the liver cytosol was 4.6-fold higher than in the liver microsomes in the presence of NADH. The reductase activity in the liver cytosol was inhibited by the addition of flavin mononucleotide and/or riboflavin. Inhibition studies indicated that menadione, dicoumarol, quercetin and 7-hydroxycoumarin inhibited rat liver cytosol-mediated DHSA formation in the absence of NADH. However, only menadione and quercetin inhibited rat liver cytosol-mediated DHSA formation in the presence of NADH. CONCLUSIONS These results suggest that the SA iminium bond reduction proceeds via two routes in the liver cytosol. One route is direct non-enzymatic reduction by NAD(P)H, and the other is enzymatic reduction by possible carbonyl and/or quinone reductases in the liver cytosol.


Rapid Communications in Mass Spectrometry | 2016

Identification of allocryptopine and protopine metabolites in rat liver S9 by high‐performance liquid chromatography/quadrupole‐time‐of‐flight mass spectrometry

Ya-Jun Huang; Sa Xiao; Zhi-Liang Sun; Jian-Guo Zeng; Yi-Song Liu; Zhao-Ying Liu

RATIONALE Allocryptopine (AL) and protopine (PR) have been extensively studied because of their anti-parasitic, anti-arrhythmic, anti-thrombotic, anti-inflammatory and anti-bacterial activity. However, limited information on the pharmacokinetics and metabolism of AL and PR has been reported. Therefore, the purpose of the present study was to investigate the in vitro metabolism of AL and PR in rat liver S9 using a rapid and accurate high-performance liquid chromatography/quadrupole-time-of-flight mass spectrometry (HPLC/QqTOFMS) method. METHODS The incubation mixture was processed with 15% trichloroacetic acid (TCA). Multiple scans of AL and PR metabolites and accurate mass measurements were automatically performed simultaneously through data-dependent acquisition in only a 30-min analysis. The structural elucidations of these metabolites were performed by comparing their changes in accurate molecular masses and product ions with those of the precursor ion or metabolite. RESULTS Eight and five metabolites of AL and PR were identified in rat liver S9, respectively. Among these metabolites, seven and two metabolites of AL and PR were identified in the first time, respectively. The demethylenation of the 2,3-methylenedioxy, the demethylation of the 9,10-vicinal methoxyl group and the 2,3-methylenedioxy group were the main metabolic pathways of AL and PR in liver S9, respectively. In addition, the cleavage of the methylenedioxy group of the drugs and subsequent methylation or O-demethylation were also the common metabolic pathways of drugs in liver S9. In addition, the hydroxylation reaction was also the metabolic pathway of AL. CONCLUSIONS This was the first investigation of in vitro metabolism of AL and PR in rat liver S9. The detailed structural elucidations of AL and PR metabolites were performed using a rapid and accurate HPLC/QqTOFMS method. The metabolic pathways of AL and PR in rat were tentatively proposed based on these characterized metabolites and early reports. Copyright


RSC Advances | 2016

A novel C–C radical–radical coupling reaction promoted by visible light: facile synthesis of 6-substituted N-methyl 5,6-dihydrobenzophenanthridine alkaloids

Zhao-Ying Liu; Ya-Jun Huang; Hongqi Xie; Wei Liu; Jianguo Zeng; Pi Cheng

A novel photoredox-mediated direct intermolecular C–H functionalization of N-methyl 5,6-dihydrobenzophenanthridine is developed utilizing the visible light-induced reductive quenching pathway of photocatalyst Ir(ppy)3. In the proposed coupling mechanism, an α-amino C-radical is generated at the 6-position of N-methyl 5,6-dihydrobenzophenanthridine which is capable of coupling with α-EWG (electron withdrawing group) substituted C-radicals. The utility of this methodology has been demonstrated via rapid access to the analogue of natural 6-substituted N-methyl 5,6-dihydrobenzophenanthridine alkaloids.


Basic & Clinical Pharmacology & Toxicology | 2013

Effect of Danofloxacin on Reactive Oxygen Species Production, Lipid Peroxidation and Antioxidant Enzyme Activities in Kidney Tubular Epithelial Cell Line, LLC-PK1

Chun-Hong Yu; Zhao-Ying Liu; Lei-Sheng Sun; Yu-Juan Li; Da-Sheng Zhang; Ren-Tao Pan; Zhi-Liang Sun

The purpose of this study was to investigate the possibility that oxidative stress was involved in danofloxacin‐induced toxicity in renal tubular cells epithelial cell line (LLC‐PK1). Confluent LLC‐PK1 cells were incubated with various concentrations of danofloxacin. The extent of oxidative damage was assessed by measuring the reactive oxygen species (ROS) level, lipid peroxidation, cell apoptosis and antioxidative enzyme activities. Danofloxacin induced a concentration‐dependent increase in the ROS production, not even cytotoxic conditions. Similarly, danofloxacin caused an about 4 times increase in the level of thiobarbituric acid reactive substances at the concentration of 400 μM for 24 hr, but it did not induce cytotoxicity and apoptosis. Antioxidant enzymes activities, such as superoxide dismutase (SOD) and catalase (CAT), were increased after treatment with 100, 200 and 400 μM of danofloxacin for 24 hr. The activity of glutathione peroxidase (GPX) was significantly decreased in a concentration‐dependent manner. In addition, ROS production, lipid peroxidation and GPX decline were inhibited by additional glutathione and N‐acetyl cysteine. These data suggested that danofloxacin could not induce oxidative stress in LLC‐PK1 cells at the concentration (≤400 μM) for 24 hr. The increase levels of ROS and lipid peroxidation could be partly abated by the increase activities of SOD and CAT.


Phytotherapy Research | 2018

Medicinal plants of the genus Macleaya (Macleaya cordata, Macleaya microcarpa): A review of their phytochemistry, pharmacology, and toxicology.

Li Lin; Yan-Chun Liu; Jia-Lu Huang; Xiu-Bin Liu; Zhixing Qing; Jianguo Zeng; Zhao-Ying Liu

In the genus Macleaya, Macleaya cordata and Macleaya microcarpa have been recognized as traditional herbs that are primarily distributed in China, North America, and Europe and have a long history of medicinal usage. These herbs have been long valued and studied for detumescence, detoxification, and insecticidal effect. This review aims to provide comprehensive information on botanical, phytochemical, pharmacological, and toxicological studies on plants in the genus Macleaya. Plants from the genus of Macleaya provide a source of bioactive compounds, primarily alkaloids, with remarkable diversity and complex architectures, thereby having attracted attention from researchers. To date, 291 constituents have been identified and/or isolated from this group. These purified compounds and/or crude extract possess antitumor, anti‐inflammatory, insecticidal, and antibacterial activities in addition to certain potential toxicities. Macleaya species hold potential for medicinal applications. However, despite the pharmacological studies on these plants, the mechanisms underlying the biological activities of active ingredients derived from Macleaya have not been thoroughly elucidated to date. Additionally, there is a need for research focusing on in vivo medical effects of Macleaya compounds and, eventually, for clinical trials.


Toxicology Letters | 2014

NQO1 involves in the imine bond reduction of sanguinarine and recombinant adeno-associated virus mediated NQO1 overexpression decreases sanguinarine-induced cytotoxicity in rat BRL cells

Da-Sheng Zhang; Zhao-Ying Liu; Yu-Juan Li; Zhi-Liang Sun

UNLABELLED Although sanguinarine (SANG) can be transformed to dihydrosanguinarine (DHSA) in human and animals, the enzyme involved in the imine bond reduction of SANG is still unknown. In this study, we found that rat NAD(P)H quinone oxidoreductase 1 expressed by prokaryotic system can transform SANG to DHSA in an NADPH dependent manner. We also found out that there was more DHSA in rAAV-NQO1 infected than rAAV-CYP1A1 and rAAV-control infected BRL cells. SANG decreased rat BRL cell proliferation and augmented cell apoptosis in a time and dose dependent manner. However, the influence of DHSA to BRL cells is not significant difference than SANG. SANG-induced apoptosis was correlated with the up-regulation of Bax/Bcl2 ratio and the down-regulation of Bcl2. SANG can also dose dependently down regulate NQO1 expression, but CYP1A1 expression was a little up regulated. Since CYP1A1 involving in SANG oxidative reactions and NQO1 involving in the transform of SANG to DHSA, we hypothesized that up regulation of NQO1 could reduce SANG cytotoxicity and up regulation of CYP1A1 could increase SANG cytotoxitity. Our further study showed that recombinant adeno-associated virus (rAAV) mediated overexpression of NQO1 significantly increased cell proliferation and decreased Bax/Bcl2 ratio, apoptosis, and cytotoxicity, whereas rAAV mediated CYP1A1 overexpression had opposite effects. These data illustrated that NQO1 involved in the imine bond reduction of sanguinarine and this was a less toxic metabolizing pathway than CYP1A1-metabolizing pathway.


Rapid Communications in Mass Spectrometry | 2018

Identification of gelsemine metabolites in rat liver S9 by high‐performance liquid chromatography/quadrupole‐time‐of‐flight mass spectrometry

Kun Yang; Ya-Jun Huang; Sa Xiao; Yan-Chun Liu; Zhi-Liang Sun; Yi-Song Liu; Qi Tang; Zhao-Ying Liu

RATIONALE Gelsemine has been extensively studied because of its anti-tumor, immunomodulatory, insecticidal itching and other significant effects. However, limited information on the pharmacokinetics and metabolism of gelsemine has been reported. Therefore, the purpose of the present study was to investigate the in vitro metabolism of gelsemine in rat liver S9 by using rapid and accurate high-performance liquid chromatography/ quadrupole-time-of-flight mass spectrometry (HPLC/QqTOF-MS). METHODS The incubation mixture was processed with 15% trichloroacetic acid. Multiple scans of gelsemine metabolites and accurate mass measurements were automatically performed simultaneously through data-dependent acquisition in only 30 min. The structural elucidations of these metabolites were performed by comparing their changes in accurate molecular masses and product ions with those of the parent drug. RESULTS Five metabolites of gelsemine were identified in rat liver S9. Of these, four metabolites of gelsemine were identified for the first time. The present results showed that the metabolic pathways of gelsemine are oxidation, demethylation, and dehydrogenation in rat liver S9. CONCLUSIONS In this study, metabolites of gelsemine in liver S9 were identified and elucidated firstly using the HPLC/QqTOF-MS method. The proposed metabolic pathways of gelsemine in liver S9 will provide a basis for further studies of the in vivo metabolism of gelsemine in animals and humans.

Collaboration


Dive into the Zhao-Ying Liu's collaboration.

Top Co-Authors

Avatar

Zhi-Liang Sun

Hunan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Jianguo Zeng

Hunan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Ya-Jun Huang

Hunan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Yan-Chun Liu

Hunan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Kun Yang

Hunan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Li Lin

Hunan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Pi Cheng

Hunan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Sa Xiao

Hunan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xiao-Jun Chen

Hunan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Yong Wu

Hunan Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge