Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhao-zhong Su is active.

Publication


Featured researches published by Zhao-zhong Su.


Journal of Cellular Physiology | 2011

Role of Excitatory Amino Acid Transporter-2 (EAAT2) and glutamate in neurodegeneration: Opportunities for developing novel therapeutics

Keetae Kim; Seok-Geun Lee; Timothy P. Kegelman; Zhao-zhong Su; Swadesh K. Das; Rupesh Dash; Santanu Dasgupta; Paola M. Barral; Michael Hedvat; Paul Diaz; John C. Reed; John L. Stebbins; Maurizio Pellecchia; Devanand Sarkar; Paul B. Fisher

Glutamate is an essential excitatory neurotransmitter regulating brain functions. Excitatory amino acid transporter (EAAT)‐2 is one of the major glutamate transporters expressed predominantly in astroglial cells and is responsible for 90% of total glutamate uptake. Glutamate transporters tightly regulate glutamate concentration in the synaptic cleft. Dysfunction of EAAT2 and accumulation of excessive extracellular glutamate has been implicated in the development of several neurodegenerative diseases including Alzheimers disease, Huntingtons disease, and amyotrophic lateral sclerosis. Analysis of the 2.5 kb human EAAT2 promoter showed that NF‐κB is an important regulator of EAAT2 expression in astrocytes. Screening of approximately 1,040 FDA‐approved compounds and nutritionals led to the discovery that many β‐lactam antibiotics are transcriptional activators of EAAT2 resulting in increased EAAT2 protein levels. Treatment of animals with ceftriaxone (CEF), a β‐lactam antibiotic, led to an increase of EAAT2 expression and glutamate transport activity in the brain. CEF has neuroprotective effects in both in vitro and in vivo models based on its ability to inhibit neuronal cell death by preventing glutamate excitotoxicity. CEF increases EAAT2 transcription in primary human fetal astrocytes through the NF‐κB signaling pathway. The NF‐κB binding site at −272 position was critical in CEF‐mediated EAAT2 protein induction. These studies emphasize the importance of transcriptional regulation in controlling glutamate levels in the brain. They also emphasize the potential utility of the EAAT2 promoter for developing both low and high throughput screening assays to identify novel small molecule regulators of glutamate transport with potential to ameliorate pathological changes occurring during and causing neurodegeneration. J. Cell. Physiol. 226: 2484–2493, 2011.


Oncogene | 2008

Astrocyte elevated gene-1 activates cell survival pathways through PI3K-Akt signaling

Seok-Geun Lee; Zhao-zhong Su; Luni Emdad; Devanand Sarkar; Franke Tf; Paul B. Fisher

Astrocyte elevated gene-1 (AEG-1) displays oncogenic properties. Its expression is elevated in diverse neoplastic states and it cooperates with Ha-ras to promote cellular transformation. Overexpression of AEG-1 augments invasion and anchorage-independent growth of transformed cells, while AEG-1 siRNA inhibits Ha-ras-mediated colony formation, supporting a potential functional role in tumorigenesis. Additionally, oncogenic Ha-ras induces AEG-1 expression through the phosphatidylinositol 3-kinase (PI3K)-Akt signaling pathway. In the present study, we investigated whether AEG-1 could induce serum-independent cell growth, another property of oncogenes. Overexpression of AEG-1 inhibited serum starvation-induced apoptosis through activation of PI3K-Akt signaling, one of the effector pathways induced by activated Ras. AEG-1 also affected the phosphorylation state of Akt substrates that are implicated in apoptosis suppression, including glycogen synthase kinase 3β, c-Myc, murine double minute 2, p53, p21/mda-6 and Bad. Additionally, AEG-1 blocked the activity of serum starvation-induced caspases. Taken together, these observations provide evidence that AEG-1 is an oncogene cooperating with Ha-ras as well as functioning as a downstream target gene of Ha-ras and may perform a central role in Ha-ras-mediated carcinogenesis. Activation of survival pathways may be one mechanism by which AEG-1 exerts its oncogenic properties.


Oncogene | 2005

Unique aspects of mda-7/IL-24 antitumor bystander activity: establishing a role for secretion of MDA-7/IL-24 protein by normal cells.

Zhao-zhong Su; Luni Emdad; Moira Sauane; Irina V. Lebedeva; Devanand Sarkar; Pankaj Gupta; C. David James; Aaron Randolph; Kirstoffer Valerie; Mark R. Walter; Paul Dent; Paul B. Fisher

Melanoma differentiation associated gene-7 (mda-7) was cloned using subtraction hybridization from terminally differentiated human melanoma cells. Based on structural and functional properties, mda-7 is now recognized as interleukin-24 (IL-24), a new member of the expanding IL-10 gene family. Unique properties of mda-7/IL-24 include its ability to selectively induce growth suppression, apoptosis and radiosensitization in diverse human cancer cells, without causing similar effects in normal cells. The utility of mda-7/IL-24, administered by means of a replication-incompetent adenovirus, as a gene therapy for cancer has recently received validation in patients, highlighting an important phenomenon initially observed in pancreatic tumor cells, namely a ‘potent bystander apoptosis-inducing effect’ in adjacent tumor cells not initially receiving this gene product. We presently investigated the contribution of mda-7/IL-24 secreted by normal cells in mediating this ‘bystander effect’, and document that normal cells induced to produce mda-7/IL-24 following infection with recombinant adenoviruses expressing this cytokine secrete mda-7/IL-24, which modifies the anchorage-independent growth, invasiveness, survival and sensitivity to radiation of cancer cells that contain functional IL-20/IL-22 receptors, but not in cancer cells that lack a complete set of receptors. Moreover, the combination of secreted mda-7/IL-24 and radiation engenders a ‘bystander antitumor effect’ not only in inherently mda-7/IL-24 or radiation-sensitive cancer cells, but also in tumor cells overexpressing the antiapoptotic proteins bcl-2 or bcl-xL and displaying resistance to either treatment alone. The present studies provide definitive evidence that secreted mda-7/IL-24 from normal cells can induce direct antitumor and radiation-enhancing effects that are dependent on the presence of canonical receptors for this cytokine on tumor cells. Moreover, we now describe a novel means of enhancing mda-7/IL-24s therapeutic potential by targeting normal cells to produce and release this cancer-specific apoptosis-inducing cytokine, a strategy that could be employed as an innovative way of using this unique gene product for treating metastatic disease.


Cancer Research | 2010

Mechanism of Autophagy to Apoptosis Switch Triggered in Prostate Cancer Cells by Antitumor Cytokine Melanoma Differentiation-Associated Gene 7/Interleukin-24

Sujit K. Bhutia; Rupesh Dash; Swadesh K. Das; Belal Azab; Zhao-zhong Su; Seok-Geun Lee; Steven Grant; Adly Yacoub; Paul Dent; David T. Curiel; Devanand Sarkar; Paul B. Fisher

Melanoma differentiation-associated gene 7 (mda-7)/interleukin-24 (IL-24) is a unique member of the IL-10 gene family, which displays a broad range of antitumor properties, including induction of cancer-specific apoptosis. Adenoviral-mediated delivery by Ad.mda-7 invokes an endoplasmic reticulum (ER) stress response that is associated with ceramide production and autophagy in some cancer cells. Here, we report that Ad.mda-7-induced ER stress and ceramide production trigger autophagy in human prostate cancer cells, but not in normal prostate epithelial cells, through a canonical signaling pathway that involves Beclin-1, atg5, and hVps34. Autophagy occurs in cancer cells at early times after Ad.mda-7 infection, but a switch to apoptosis occurs by 48 hours after infection. Inhibiting autophagy with 3-methyladenosine increases Ad.mda-7-induced apoptosis, suggesting that autophagy may be initiated first as a cytoprotective mechanism. Inhibiting apoptosis by overexpression of antiapoptotic proteins Bcl-2 or Bcl-xL increased autophagy after Ad.mda-7 infection. During the apoptotic phase, the MDA-7/IL-24 protein physically interacted with Beclin-1 in a manner that could inhibit Beclin-1 function culminating in apoptosis. Conversely, Ad.mda-7 infection elicited calpain-mediated cleavage of the autophagic protein ATG5 in a manner that could facilitate switch to apoptosis. Our findings reveal novel aspects of the interplay between autophagy and apoptosis in prostate cancer cells that underlie the cytotoxic action of mda-7/IL-24, possibly providing new insights in the development of combinatorial therapies for prostate cancer.


Oncogene | 2009

Astrocyte elevated gene-1 contributes to the pathogenesis of neuroblastoma

Seok-Geun Lee; Hyun Yong Jeon; Zhao-zhong Su; J E Richards; Nicollaq Vozhilla; Devanand Sarkar; T Van Maerken; Paul B. Fisher

Neuroblastoma, derived from neural crest progenitor cells, is the most common extracranial solid tumor of childhood. Astrocyte elevated gene-1 (AEG-1) is a primary mediator of tumor progression and metastasis in several human cancers. In this study, we investigated the potential contribution of AEG-1 in human neuroblastoma pathogenesis. AEG-1 expression was significantly elevated in neuroblastoma patient-derived samples and neuroblastoma cell lines as compared with normal peripheral nerve tissues, normal astrocytes and immortalized melanocytes. Knockdown of AEG-1 by small interfering RNA reduced the tumorigenic properties of highly aggressive neuroblastoma cells. Conversely, over-expression of AEG-1 enhanced proliferation and expression of the transformed state in less aggressive neuroblastoma cells through activation of the phosphatidylinositol 3-kinase-Akt-signaling pathway and stabilization of MYCN. These provocative results indicate that AEG-1 may play a crucial role in the pathogenesis of neuroblastoma and could represent a potential target for therapeutic intervention.


Journal of Cellular Physiology | 2003

Mda-7/IL-24 induces apoptosis of diverse cancer cell lines through JAK/STAT-independent pathways.

Moira Sauane; Rahul V. Gopalkrishnan; Irina V. Lebedeva; Mei Xin Mei; Devanand Sarkar; Zhao-zhong Su; Dong-Chul Kang; Paul Dent; Sidney Pestka; Paul B. Fisher

Experimental evidence documents that the MDA‐7/IL‐24 protein (an IL‐10 family cytokine) binds to IL‐20 and IL‐22 receptor complexes resulting in the activation of JAK/STAT signaling pathways. Recent published reports utilizing human blood derived primary lymphocytes have provided additional confirmatory evidence relating to the cytokine properties of this molecule. A notable attribute of mda‐7/IL‐24 is its cancer cell‐specific apoptosis inducing capacity, which currently remains incompletely understood. Treatment with distinctive tyrosine kinase inhibitors (Genistein and AG18) or a JAK‐selective inhibitor (AG490) did not prevent Ad.mda‐7 induced apoptosis in diverse cell lines. In addition, there is no apparent correlation between patterns of expression of IL‐20R1, IL‐20R2, and IL‐22R mRNA and susceptibility to Ad.mda‐7 in different cell lines. Furthermore, Ad.mda‐7 is able to induce killing in STAT/JAK deficient cells. In contrast, treatment with the p38MAPK selective inhibitor SB203580, partially inhibited apoptosis induced by Ad.mda‐7 in different cell lines. These results demonstrate for the first time that signaling events leading to susceptibility to Ad.mda‐7 induced apoptosis, might be tyrosine kinase independent and can thus be distinguished from its cytokine function related properties mediated by the IL‐20/IL‐22 receptor complexes that require JAK/STAT kinase activity. J. Cell. Physiol. 196: 334–345, 2003.


Cancer Research | 2010

Molecular Mechanism of Chemoresistance by Astrocyte Elevated Gene-1

Byoung Kwon Yoo; Dong Chen; Zhao-zhong Su; Rachel Gredler; Jinsang Yoo; Khalid Shah; Paul B. Fisher; Devanand Sarkar

Our recent findings show that astrocyte elevated gene-1 (AEG-1) is overexpressed in >90% of human hepatocellular carcinoma (HCC) samples, and AEG-1 plays a central role in regulating development and progression of HCC. In the present study, we elucidate a molecular mechanism of AEG-1-induced chemoresistance, an important characteristic of aggressive cancers. AEG-1 increases the expression of multidrug resistance gene 1 (MDR1) protein, resulting in increased efflux and decreased accumulation of doxorubicin, promoting doxorubicin resistance. Suppression of MDR1 by small interfering RNA or chemical reagents, or inhibition of AEG-1 or a combination of both genes, significantly increases in vitro sensitivity to doxorubicin. In nude mice xenograft studies, a lentivirus expressing AEG-1 short hairpin RNA, in combination with doxorubicin, profoundly inhibited growth of aggressive human HCC cells compared with either agent alone. We document that although AEG-1 does not affect MDR1 gene transcription, it facilitates association of MDR1 mRNA to polysomes, resulting in increased translation, and AEG-1 also inhibits ubiquitination and subsequent proteasome-mediated degradation of MDR1 protein. This study is the first documentation of a unique aspect of AEG-1 function (i.e., translational and posttranslational regulation of proteins). Inhibition of AEG-1 might provide a means of more effectively using chemotherapy to treat HCC, which displays inherent chemoresistance with aggressive pathology.


Cytokine & Growth Factor Reviews | 2010

mda-7/IL-24: A unique member of the IL-10 gene family promoting cancer-targeted toxicity

Rupesh Dash; Sujit K. Bhutia; Belal Azab; Zhao-zhong Su; Bridget A. Quinn; Timothy P. Kegelmen; Swadesh K. Das; Keetae Kim; Seok-Geun Lee; Margaret A. Park; Adly Yacoub; Mohammed Rahmani; Luni Emdad; Igor Dmitriev; Xiang-Yang Wang; Devanand Sarkar; Steven Grant; Paul Dent; David T. Curiel; Paul B. Fisher

Melanoma differentiation associated gene-7/interleukin-24 (mda-7/IL-24) is a unique member of the IL-10 gene family that displays nearly ubiquitous cancer-specific toxicity, with no harmful effects toward normal cells or tissues. mda-7/IL-24 was cloned from human melanoma cells by differentiation induction subtraction hybridization (DISH) and promotes endoplasmic reticulum (ER) stress culminating in apoptosis or toxic autophagy in a broad-spectrum of human cancers, when assayed in cell culture, in vivo in human tumor xenograft mouse models and in a Phase I clinical trial in patients with advanced cancers. This therapeutically active cytokine also induces indirect antitumor activity through inhibition of angiogenesis, stimulation of an antitumor immune response, and sensitization of cancer cells to radiation-, chemotherapy- and antibody-induced killing.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Human polynucleotide phosphorylase selectively and preferentially degrades microRNA-221 in human melanoma cells

Swadesh K. Das; Upneet K. Sokhi; Sujit K. Bhutia; Belal Azab; Zhao-zhong Su; Devanand Sarkar; Paul B. Fisher

MicroRNAs (miRNA), small noncoding RNAs, affect a broad range of biological processes, including tumorigenesis, by targeting gene products that directly regulate cell growth. Human polynucleotide phosphorylase (hPNPaseold-35), a type I IFN-inducible 3′-5′ exoribonuclease, degrades specific mRNAs and small noncoding RNAs. The present study examined the effect of this enzyme on miRNA expression in human melanoma cells. miRNA microarray analysis of human melanoma cells infected with empty adenovirus or with an adenovirus expressing hPNPaseold-35 identified miRNAs differentially and specifically regulated by hPNPaseold-35. One of these, miR-221, a regulator of the cyclin-dependent kinase inhibitor p27kip1, displayed robust down-regulation with ensuing up-regulation of p27kip1 by expression of hPNPaseold-35, which also occurred in multiple human melanoma cells upon IFN-β treatment. Using both in vivo immunoprecipitation followed by Northern blotting and RNA degradation assays, we confirm that mature miR-221 is the target of hPNPaseold-35. Inhibition of hPNPaseold-35 by shRNA or stable overexpression of miR-221 protected melanoma cells from IFN-β–mediated growth inhibition, accentuating the importance of hPNPaseold-35 induction and miR-221 down-regulation in mediating IFN-β action. Moreover, we now uncover a mechanism of miRNA regulation involving selective enzymatic degradation. Targeted overexpression of hPNPaseold-35 might provide an effective therapeutic strategy for miR-221–overexpressing and IFN-resistant tumors, such as melanoma.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Astrocyte elevated gene-1 induces protective autophagy

Sujit K. Bhutia; Timothy P. Kegelman; Swadesh K. Das; Belal Azab; Zhao-zhong Su; Seok-Geun Lee; Devanand Sarkar; Paul B. Fisher

Astrocyte-elevated gene-1 (AEG-1) expression increases in multiple cancers and plays a crucial role in oncogenic transformation and angiogenesis, which are essential components in tumor cell development, growth, and progression to metastasis. Moreover, AEG-1 directly contributes to resistance to chemotherapeutic drugs, another important hallmark of aggressive cancers. In the present study, we document that AEG-1 mediates protective autophagy, an important regulator of cancer survival under metabolic stress and resistance to apoptosis, which may underlie its significant cancer-promoting properties. AEG-1 induces noncanonical autophagy involving an increase in expression of ATG5. AEG-1 decreases the ATP/AMP ratio, resulting in diminished cellular metabolism and activation of AMP kinase, which induces AMPK/mammalian target of rapamycin-dependent autophagy. Inhibition of AMPK by siAMPK or compound C decreases expression of ATG5, ultimately attenuating AEG-1–induced autophagy. AEG-1 protects normal cells from serum starvation-induced death through protective autophagy, and inhibition of AEG-1–induced autophagy results in serum starvation-induced cell death. We also show that AEG-1–mediated chemoresistance is because of protective autophagy and inhibition of AEG-1 results in a decrease in protective autophagy and chemosensitization of cancer cells. In summary, the present study reveals a previously unknown aspect of AEG-1 function by identifying it as a potential regulator of protective autophagy, an important feature of AEG-1 that may contribute to its tumor-promoting properties.

Collaboration


Dive into the Zhao-zhong Su's collaboration.

Top Co-Authors

Avatar

Paul B. Fisher

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Devanand Sarkar

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Paul Dent

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Belal Azab

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Swadesh K. Das

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Rupesh Dash

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David T. Curiel

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Luni Emdad

Virginia Commonwealth University

View shared research outputs
Researchain Logo
Decentralizing Knowledge