Zhaohan Zhang
Harbin Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zhaohan Zhang.
Journal of Hazardous Materials | 2010
Yujie Feng; Zhaohan Zhang; Peng Gao; Hui Su; Yanling Yu; Nanqi Ren
The adsorption behavior of 17 alpha-ethinylestradiol (EE(2)) onto inactivated sludge was investigated to assess the function of adsorption on EE(2) removal in activated sludge system. The adsorption equilibrium of EE(2) can be achieved in 5.0 h at the research temperature and the adsorption process could be well described by pseudo-second-order model. The equilibrium data at different temperatures were fitted by a linear regression. The thermodynamics analysis revealed that EE(2) adsorption onto inactivated sludge was spontaneous (Delta G=-15.18 to -16.35 kJ/mol), enthalpy-driven (Delta H=-27.2 kJ/mol), entropy-retarded (DeltaS=-39.18 J/(mol K)), and mainly physical adsorption. Effects of pH, ionic strength and coexisting organic matters (methanol and bisphenol A) on EE(2) adsorption onto inactivated sludge were also examined. The amounts of EE(2) equilibrium adsorption ability were unchanged as the pH values increasing from 2.0 to 6.0, but decreased from 2.14 to 1.43 mg/g MLSS when the initial EE(2) concentration was 5.0mg/L as pH above 6.0. The adsorption capacities were first increased from 2.19 to 2.50mg/g MLSS, then sharply decreased and stabilized at 1.12 mg/g MLSS during the ionic strength was adjusted from 0 to 1 mol/L. Methanol (0.4-5%, v/v) and bisphenol A (0-200mg/L) in the mixed liquor can decrease the adsorption capacity of EE(2) from 2.19 to 1.39 and 0.75 mg/g MLSS, respectively.
Journal of Hazardous Materials | 2010
Zhaohan Zhang; Yujie Feng; Yu Liu; Qingfang Sun; Peng Gao; Nanqi Ren
The photochemical degradation and estrogenicity removal of 17alpha-ethinylestradiol in aqueous solutions was investigated via ultraviolet (UV) photolysis and UV/H(2)O(2) process with a low-pressure UV lamp. The results indicated that the kinetics of both oxidation processes well fitted the pseudo-first-order kinetics. EE(2) can be partially removed by UV radiation alone with kinetic constants increasing from 0.0054 to 0.2753 min(-1) with the UV intensity increase. The EE(2) degradation rate enhanced from 0.0364 to 0.0684 min(-1) when H(2)O(2) was combined with the photolysis process (UV/H(2)O(2)), even though EE(2) was not oxidized when same amounts of H(2)O(2) existed in the aqueous solutions. The kinetic parameters of pseudo-first-order kinetics showed positive correlation to UV intensity and also H(2)O(2) concentration, however negative to the initial EE(2) concentration. A regression model was developed for pseudo-first-order rate constant as a function of the UV intensity, H(2)O(2) concentration and initial EE(2) concentration, which could be used to estimate the EE(2) degradation rate at various operational conditions. The yeast estrogen screen (YES) was employed to evaluate the estrogenicity of photolytic water samples. Results showed that more than 95% of the estrogenicity was removed after 40 min irradiation and the parent compound EE(2) was mainly responsible for the observed estrogenicity.
Nanotechnology | 2007
Huijun Gao; Xitian Zhang; M Y Zhou; Zhaohan Zhang; Xuan-zhang Wang
Disc-modified nanohelices (DNHs) of ZnO were synthesized by thermal evaporation. The ZnO DNHs are constructed by nanowires which are regularly attached with discs. The axis of the DNH structure is along the ZnO[0001] direction. The pitch distance, the mean diameter, and the thickness of the nanowires are uniform for each ZnO DNH. Within one period there are 12 discs symmetrically attached on the surfaces of the nanowires. The discs are composed of nanometre-sized ZnO crystal cores and amorphous SiO2 shells. The mechanism of formation of the nanostructures is also discussed.
Science of The Total Environment | 2016
Zhaohan Zhang; Peng Gao; Moqing Li; Jiaqi Cheng; Wei Liu; Yujie Feng
The widespread utilization of silver nanoparticles (AgNPs) in industrial and commercial products inevitably raises the release into wastewater that might cause potential negative impacts on sewage treatment system. In this paper, long-term exposure experiments at four levels were conducted to determine whether AgNPs caused adverse impacts on nutrient removals in sequencing batch reactors (SBRs) and changes of microbial community structure. Compared with the control reactor (without AgNPs), carbon, nitrogen and phosphorus removal in presence of 0.1mg/L AgNPs was no difference. However, presence of 1.0 and 10mg/L AgNPs decreased the average removal efficiencies of COD from 95.4% to 85.2% and 68.3%, ammonia nitrogen from 98.8% to 71.2% and 49%, SOP from 97.6% to 75.5% and 54.1%, respectively. It was found that AgNPs could accumulate in sludge with the distribution coefficients of 39.2-114L/g, inhibit the protein and polysaccharide production in EPS, reduce the SOUR of sludge, and greatly increase LDH release from microbial cells. The illumina high-throughput sequencing results indicated that AgNPs concentration changed the structures of bacterial communities, associating with the effects of AgNPs on reactor performance. Sequence analyses showed that Proteobacteria, Bacteroidetes and Acidobacteria were the dominant phyla. It was notable that AgNPs addition reduced the contents of several nitrifying bacteria at genera level in sludge, leading to the lower removal of nitrogen.
Environmental Pollution | 2011
Peng Gao; Yujie Feng; Zhaohan Zhang; Junfeng Liu; Nanqi Ren
Knowledge of toxic chemical sorption by soil/sediment is critical for environmental risk assessment of toxic chemicals, especially for the multi-sorbate system in river ecosystem. Sorption characteristics of 2, 4-Dichlorophenol, 2, 4-Dinitrophenol and 2, 4-Dimethyphenol on sediment were investigated. Adsorption isotherms in single- and multi-sorbate systems fitted well the Freundlich model. The adsorption effects were different among three selected phenolic compounds in single- and multi-sorbate systems. The synergetic affect that 2, 4-Dinitrophenol and 2, 4-Dimethyphenol bring to 2, 4-Dichlorophenol can be explained by the compression of double electronic layer and the charge neutrality. Adsorption kinetic results showed that pseudo-second-order model can be used to describe the experimental data and the adsorption affinity of phenolic compounds influenced greatly by the adsorption velocity. The present study suggests that the fate and transport of emerging pollutants such as phenolic compounds could be affected in the presence of different hydrophobic pollutants in aquatic systems.
Water Research | 2018
Zhaohan Zhang; Peng Gao; Jiaqi Cheng; Guohong Liu; Xiaoqi Zhang; Yujie Feng
Packing nano mediators into anaerobic system is an attractive technology to strengthen refractory pollutant removal and methane production from wastewater, but is limited by the drawbacks such as easy loss and poor mass transfer. In this study, GAC/NZVI mediator was added into EGSB reactor to investigate the enhancement effects and mechanism for anaerobic digestion of tetracycline wastewater and its impacts on microbial community structure. The results indicated that GAC/NZVI could enhance COD and TOC removal by 12.1% and 10.3%, while have no evident influence on tetracycline removal and sulfide production. The biogas production and methane content were increased by 21.2% and 26.9%, respectively. GAC/NZVI addition resulted in formation of densely packed aggregates, and evidently increased the electrical conductivity and EPS content in sludge. Fe content in sludge was 20.43% with the loss of only 5.4% during 34 d operation. Microbial community analysis revealed that GAC/NZVI addition could both increase the Chao 1 richness index and Shannon diversity index of bacteria and archaea. It was notable that total methanogens contents increased from 74.7% to 81.74% at genera level, resulting in higher methane production, while Treponema increase might promote the degradation of tetracycline and its metabolite, leading to higher COD removal.
Scientific Reports | 2016
Zhaohan Zhang; Peng Gao; Ye Qiu; Guohong Liu; Yujie Feng; Mark R. Wiesner
This paper aimed to investigate the influences of operational parameters and aqueous chemical conditions on transport behaviors of cerium oxides nanoparticles (CeO2-NPs) in saturated silica media. Results indicated that increasing rates of attachment efficiency (α) were related with cationic types, and critical deposition concentration (CDC) for divalent cation (Ca2+ and Mg2+) were more than 31-fold of that for monovalent cation (Na+ and K+). Increase or reduction of electrolyte pH could both promote the mobility of CeO2-NPs in glass beads, while influence was more evident at alkaline conditions. α increased linearly with NPs concentrations, while decreased linearly with flow velocity in the column, and effects were related with electrolyte contents. Presence of surfactants could sharply decreased α, and SDS was more effective to facilitate CeO2-NPs transport than Triton X–100. With DOMs concentrations increasing, α firstly kept constant, then sharply declined, and finally reduced very slowly. The influence of DOMs on NPs deposition was in order of SA > HA > TA > BSA. Overall, this study revealed that aqueous chemical conditions was crucial to NPs transport in porous media, and would provide significant information for our understanding on the fate and transport of nanoparticles in natural environment.
Science of The Total Environment | 2016
Peng Gao; Tingting Lei; Liming Jia; Yang Song; Yanfeng Xing; Zhaohan Zhang; Dehai Yu; Yujie Feng; Baoshan Xing
• PM 2.5 samples were collected in indoor and outdoor environments before and during the Spring Festival.
Chemosphere | 2018
Guohong Liu; Zhaohan Zhang; Chen Yan; Yang Wang; Xuerui Ma; Peng Gao; Yujie Feng
Boron nitride Nanosheets (BNNSs) was fabricated with a method of heating the mixture of boric acid and urea in N2 atmosphere and used to remove estrone (E1) from water. The obtained BNNSs exhibited a higher surface area of 896 m2/g, a large pore volume of 0.76 cm3/g, and only few layers (0.398 nm) with the boric acid and urea ratio of 1:80. The layer number of BNNSs decreased from 15 to 4 with the mole ratio of boric acid and urea decreasing from 1:20 to 1:80, which was identified by SEM, TEM, AFM and BET measurements. More importantly, BNNSs presented an outstanding adsorption performance for estrone with the adsorption capacity of 249.15 mg E1/g BNNSs. The adsorption process could be best fitted by pseudo second-order kinetic model and the equilibrium data at different temperatures were well fitted by Langmuir isotherm model. The thermodynamics analysis revealed that E1 adsorption on BNNSs was spontaneous (ΔG = -29.33 kJ mol-1), enthalpy-retarded (ΔH = 29.75 kJ mol-1), entropy-driven (ΔS = 198.26 J mol-1 K-1), and mostly chemical adsorption. The adsorption rates of E1 in water were sharply enhanced with thinner BNNSs as absorbents and removal efficiency by BN-60 regenerated after 6 times was above 95%, it was shown that the surface areas, mesopores and remarkable structure played important roles in the adsorption process. The firmness of E1 onto BNNSs and the stability of adsorption efficiency made BNNSs as a potential absorbent for efficient removal of E1 from wastewater.
Water Science and Technology | 2015
Zhaohan Zhang; Yujie Feng; Hui Su; Lijun Xiang; Qiuyan Zou; Peng Gao; Peirong Zhan
A laboratory-scale anaerobic-anoxic-oxic (AAO) process was constructed to investigate the influence of hydraulic residence time (HRT) and sludge retention time (SRT) on the removal and fate of estrone (E1), 17β-estradiol (E2) and 17α-ethinylestradiol (EE2), and their removal mechanisms in a biological treatment system. In an HRT range of 5-15 h, the highest removal efficiencies for E1, E2 and EE2 were obtained at an HRT of 8 h, with values of 91.2, 94.6 and 81.5%, respectively. When the SRT was increased from 10 to 20 d, all three estrogen removal efficiencies stayed above 80%, while the optimal SRT for each estrogen was different. The contribution of each tank for removal of the three estrogens was in the order of aerobic tank>anoxic tank>anaerobic tank. The optimal HRT and SRT for the removal of both the three estrogens and nutrients were 8 h and 15d, respectively. At this condition, respectively, about 50.7, 70.1 and 11.3% of E1, E2 and EE2 were biodegraded, 28.8, 17.2 and 50% were accumulated in the system, 8.3, 5.4 and 17.3% were discharged in the effluent, and 12.2, 7.3 and 20.34% were transported into excess sludge. It indicated that biodegradation by sludge microorganisms was the main removal mechanism of E1 and E2, while adsorption onto sludge was the main mechanism for EE2 removal.