Zhaohe Luo
Jinan University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zhaohe Luo.
Phycologia | 2013
Zhaohe Luo; Haifeng Gu; Bernd Krock; Urban Tillmann
Luo Z., Gu H., Krock B. and Tillmann U. 2013. Azadinium dalianense, a new dinoflagellate species from the Yellow Sea, China. Phycologia 52: 625–636. DOI: 10.2216/13-178.1 The dinoflagellate genus Azadinium includes species with a plate formula of po, cp, X, 4′, 3a, 6′′, 6C, 5S, 6′′′, 2′′′′ and is part of the family Amphidomataceae with an uncertain order affiliation. Among six species, at least two produce azaspiracids (AZAs), a group of lipophilic toxins that accumulate in shellfish and can cause human health problems. Diversity within the genus might be underestimated at present due to its small size. In the present study, we searched for Azadinium by incubating freshly collected sediments from the Yellow Sea off China and succeeded in detecting a new species, here described as Azadinium dalianense sp. nov. It shared identical hypothecal, cingular and sulcal plates with the other Azadinium species, but it was unique in having only three apical and two anterior intercalary plates. Up to two stalked pyrenoids were present but their location in the cell varied. Phylogenetic analyses based on concatenated small-subunit, partial large-subunit, and internal transcribed spacer sequences revealed that A. dalianense was nested within Azadinium and formed a strongly supported clade with A. poporum. Liquid chromatography–mass spectrometry analyses did not detect any known AZAs.
European Journal of Phycology | 2016
Zhaohe Luo; Kenneth Neil Mertens; Siamak Bagheri; Hilal Aydin; Yoshihito Takano; Kazumi Matsuoka; Francine M.G. McCarthy; Haifeng Gu
Abstract Species belonging to the dinophyte genus Scrippsiella are frequently reported in marine waters, but information on their distribution in brackish environments is limited. Here we describe a new species, S. plana, through incubation of non-calcified cysts from sediments collected in the South China Sea and Caspian Sea. The vegetative cells consist of a conical epitheca and a rounded hypotheca with the plate formula of Po, X, 4′, 3a, 7′′, 5C+t, 5S, 5′′′, 2′′′′. It differs from other Scrippsiella species by its flattened body in dorsoventral view and a small first anterior intercalary (1a) plate (half the size of plate 3a). Scrippsiella plana strains from the South China Sea and Caspian Sea share identical internal transcribed spacer (ITS) sequences, and show phenotypic plasticity and local adaptation in growth rate at various salinities, consistent with the environments in which they originated. In addition, two strains of S. spinifera were obtained by incubating ellipsoid cysts with calcareous spines from sediments collected along the Turkish and Hawaiian coast. They also share identical ITS sequences and differ from Duboscquodinium collinii (a parasite of tintinnids) only at two base pair positions (in the ITS2 region). Molecular phylogeny based on ITS and large subunit ribosomal DNA (LSU rDNA) sequences revealed that S. plana was nested within the Calciodinellum (CAL) clade and S. spinifera within the S. trochoidea (STR) clade. The phylogenetic position of ‘Peridinium’ wisconsinense is reported for the first time, which supports multiple transitions of the Peridiniales to freshwater.
Journal of Phycology | 2015
Haifeng Gu; Zhaohe Luo; Kenneth Neil Mertens; Andrea M. Price; R.E. Turner; Nancy N. Rabalais
In the present study, we redescribed Gyrodinium resplendens through incubation of process bearing cysts extracted from sediment collected in the northern Gulf of Mexico. The morphology and ultrastructure of the motile stage and cyst stage were examined using light microscopy, scanning electron microscopy, and transmission electron microscopy and this revealed that the species should be transferred to the genus Barrufeta. This genus differs from other gymnodinioid genera in possessing a Smurf‐cap apical structure complex (ASC) and currently encompasses only one species, Barrufeta bravensis. B. resplendens shows a Smurf‐cap ASC that consists of three rows of elongated vesicles with small knobs in the middle one. B. resplendens is very similar to B. bravensis in cell morphology, but can be separated using the ultrastructure such as the shape and location of nucleus and pyrenoids, which highlights the importance of ultrastructure at inter‐specific level in the genus Barrufeta. The unique cysts of B. resplendens are brown and process bearing, and have a tremic archeopyle with a zigzag margin on the dorsal side of the epicyst, and not polar as in cysts of Polykrikos. The cysts do not survive the palynological treatment used here and probably have a wide distribution. Maximum‐likelihood and Bayesian inference were carried out based on partial large subunit ribosomal DNA (LSU rDNA) sequences. Molecular phylogeny supports that the genus Barrufeta is monophyletic, and that the genus Gymnodinium is polyphyletic. Our results suggest that details of the ASC together with ultrastructure are potential features to subdivide the genus Gymnodinium.
Harmful Algae | 2017
Zhaohe Luo; Wei-Dong Yang; Chui Pin Leaw; Vera Pospelova; Gwenael Bilien; Guat Ru Liow; Po Teen Lim; Haifeng Gu
Blooms of the harmful dinoflagellate Akashiwo sanguinea are responsible for the mass mortality of fish and invertebrates in coastal waters. This cosmopolitan species includes several genetically differentiated clades. Four clonal cultures were established by isolating single cells from Xiamen Harbour (the East China Sea) for morphological and genetic analyses. The cultures displayed identical morphology but were genetically different, thus revealing presence of cryptic diversity in the study area. New details of the apical structure complex of Akashiwo sanguinea were also found. To investigate whether the observed cryptic diversity was related to environmental differentiation, 634 cells were obtained from seasonal water samples collected from 2008 to 2012. These cells were sequenced by single-cell PCR. For comparison with Chinese material, additional large subunit ribosomal DNA sequences were obtained for three established strains from Malaysian and French waters. To examine potential ecological differentiation of the distinct genotypes, growth responses of the studied strains were tested under laboratory conditions at temperatures of 12°C to 33°C. These experiments showed four distinct ribotypes of A. sanguinea globally, with the ribotypes A and B co-occuring in Xiamen Harbour. Ribotype A of A. sanguinea was present year-round in Xiamen Harbour, but it only bloomed in the winter and spring, thus corresponding to the winter type. In contrast, A. sanguinea ribotype B bloomed only in the summer, corresponding to the summer type. This differentiation supports the temperature optimum conditions that were established for these two ribotypes in the laboratory. Ribotype A grew better at lower temperatures compared to ribotype B which preferred higher temperatures. These findings support the idea that various ribotypes of A. sanguinea correspond to distinct ecotypes and allopatric speciation occurred in different climatic regions followed by dispersal.
Journal of Phycology | 2018
Zhaohe Luo; Zhangxi Hu; Ying Zhong Tang; Kenneth Neil Mertens; Chui Pin Leaw; Po Teen Lim; Sing Tung Teng; Lei Wang; Haifeng Gu
The genus Gymnodinium includes many morphologically similar species, but molecular phylogenies show that it is polyphyletic. Eight strains of Gymnodinium impudicum, Gymnodinium dorsalisulcum and a novel Gymnodinium‐like species from Chinese and Malaysian waters and the Mediterranean Sea were established. All of these strains were examined with light microscopy, scanning electron microscopy and transmission electron microscopy. SSU, LSU and internal transcribed spacers rDNA sequences were obtained. A new genus, Wangodinium, was erected to incorporate strains with a loop‐shaped apical structure complex (ASC) comprising two rows of amphiesmal vesicles, here referred to as a new type of ASC. The chloroplasts of Wangodinium sinense are enveloped by two membranes. Pigment analysis shows that peridinin is the main accessory pigment in W. sinense. Wangodinium differs from other genera mainly in its unique ASC, and additionally differs from Gymnodinium in the absence of nuclear chambers, and from Lepidodinium in the absence of Chl b and nuclear chambers. New morphological information was provided for G. dorsalisulcum and G. impudicum, e.g., a short sulcal intrusion in G. dorsalisulcum; nuclear chambers in G. impudicum and G. dorsalisulcum; and a chloroplast enveloped by two membranes in G. impudicum. Molecular phylogeny was inferred using maximum likelihood and Bayesian inference with independent SSU and LSU rDNA sequences. Our results support the classification of Wangodinium within the Gymnodiniales sensu stricto clade and it is close to Lepidodinium. Our results also support the close relationship among G. dorsalisulcum, G. impudicum, and Barrufeta. Further research is needed to assign these Gymnodinium species to Barrufeta or to erect new genera.
European Journal of Phycology | 2018
Zhaohe Luo; Zhen Fei Lim; Kenneth Neil Mertens; Pieter Gurdebeke; Kara Bogus; M. Consuelo Carbonell-Moore; Henk Vrielinck; Chui Pin Leaw; Po Teen Lim; Nicolas Chomérat; Xintian Li; Haifeng Gu
ABSTRACT The dinoflagellate genus Bysmatrum encompasses five epibenthic or tide-pool species and has been characterized by separated anterior intercalary plates. In the present study, we obtained six strains of Bysmatrum from the South China Sea and French Atlantic coast by isolating single cells/cysts from plankton and sediment samples. All strains were examined with light microscopy and scanning electron microscopy. Based on morphological observations, three strains were identified as Bysmatrum subsalsum, characterized by the elongated and rectangular first and a hexagonal second anterior intercalary plate. They differ from each other in the number of sulcal lists and the configuration of the first anterior intercalary plate. One strain was identified as Bysmatrum gregarium and the other two as Bysmatrum granulosum. The cyst-theca relationship of B. subsalsum from the French Atlantic was established by incubation of the cyst, and the geochemical composition of the cyst wall was measured through micro-Fourier transform infrared spectroscopy. Bysmatrum subsalsum from Malaysia shows a bright red stigma in the sulcal area under light microscopy, which was confirmed with transmission electron microscopy: it was identified as a type B eyespot. Small subunit ribosomal DNA (SSU rDNA), partial large subunit ribosomal DNA (LSU rDNA) and internal transcribed spacer (ITS) sequences were obtained from all six strains. The maximum likelihood and Bayesian inference analysis based on concatenated SSU, ITS and LSU sequences revealed that Bysmatrum is monophyletic and nested within Peridiniales. Our strains of B. subsalsum form a new ribotype in the molecular phylogeny (designated as ribotype B). The genetic distance based on ITS sequences among Bysmatrum species ranged from 0.34 to 0.47 and those genetic distances at the intraspecific level of B. subsalsum could reach 0.41, supporting the possibility of hidden crypticity within B. subsalsum.
Harmful Algae | 2013
Haifeng Gu; Zhaohe Luo; Bernd Krock; Matthias Witt; Urban Tillmann
Harmful Algae | 2017
Zhaohe Luo; Bernd Krock; Kenneth Neil Mertens; Elisabeth Nézan; Nicolas Chomérat; Gwenael Bilien; Urban Tillmann; Haifeng Gu
Algal Research-Biomass Biofuels and Bioproducts | 2017
Zhaohe Luo; Hua Zhang; Bernd Krock; Songhui Lu; Wei-Dong Yang; Haifeng Gu
Harmful Algae | 2016
Zhaohe Luo; Bernd Krock; Kenneth Neil Mertens; Andrea M. Price; R.E. Turner; Nancy N. Rabalais; Haifeng Gu