Zhaohua Zheng
Monash University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zhaohua Zheng.
Molecular Pharmacology | 2011
Zhaohua Zheng; Syazwani I. Amran; Philip E. Thompson; Ian G. Jennings
The combination of molecular modeling and X-ray crystallography has failed to yield a consensus model of the mechanism for selective binding of inhibitors to the phosphoinositide 3-kinase (PI3K) p110 α-isoform. Here we have used kinetic analysis to determine that the p110α-selective inhibitor 2-methyl-5-nitro-2-[(6-bromoimidazo[1,2-α]pyridin-3-yl)methylene]-1-methylhydrazide-benzenesulfonic acid (PIK-75) is a competitive inhibitor with respect to a substrate, phosphatidylinositol (PI) in contrast to most other PI3K inhibitors, which bind at or near the ATP site. Using sequence analysis and the existing crystal structures of inhibitor complexes with the p110γ and -δ isoforms, we have identified a new region of nonconserved amino acids (region 2) that was postulated to be involved in PIK-75 p110α selectivity. Analysis of region 2, using in vitro mutation of identified nonconserved amino acids to alanine, showed that Ser773 was a critical amino acid involved in PIK-75 binding, with an 8-fold-increase in the IC50 compared with wild-type. Kinetic analysis showed that, with respect to PI, the PIK-75 Ki for the isoform mutant S773D increased 64-fold compared with wild-type enzyme. In addition, a nonconserved amino acid, His855, from the previously identified region 1 of nonconserved amino acids, was found to be involved in PIK-75 binding. These results show that these two regions of nonconserved amino acids that are close to the substrate binding site could be targeted to produce p110α isoform-selective inhibitors.
Biochemical Journal | 2012
Zhaohua Zheng; Syazwani I. Amran; Jiuxiang Zhu; Oleg Schmidt-Kittler; Kenneth W. Kinzler; Bert Vogelstein; Peter R. Shepherd; Philip E. Thompson; Ian G. Jennings
The binding mechanism of a new class of lipid-competitive, ATP non-competitive, p110α isoform-selective PI3K (phosphoinositide 3-kinase) inhibitors has been elucidated. Using the novel technique of isoform reciprocal mutagenesis of non-conserved amino acids in the p110α and p110β isoforms, we have identified three unique binding mechanisms for the p110α-selective inhibitors PIK-75, A-66S and J-32. Each of the inhibitors p110α-isoform-selective binding was found to be due to interactions with different amino acids within p110. The PIK-75 interaction bound the non-conserved region 2 amino acid p110α Ser(773), A-66S bound the region 1 non-conserved amino acid p110α Gln(859), and J-32 binding had an indirect interaction with Lys(776) and Ile(771). The isoform reciprocal mutagenesis technique is shown to be an important analytical tool for the rational design of isoform-selective inhibitors.
Bioorganic & Medicinal Chemistry Letters | 2011
J.L Nankervis; Susanne C. Feil; Nancy C. Hancock; Zhaohua Zheng; Hooi-Ling Ng; Craig J. Morton; Jessica K. Holien; Patricia W. M. Ho; M.M Frazzetto; Ian G. Jennings; David T. Manallack; T. J. Martin; Philip E. Thompson; Michael W. Parker
PDE4 inhibitors have been identified as therapeutic targets for a variety of conditions, particularly inflammatory diseases. We have serendipitously identified a novel class of phosphodiesterase 4 (PDE4) inhibitor during a study to discover antagonists of the parathyroid hormone receptor. X-ray crystallographic studies of PDE4D2 complexed to four potent inhibitors reveal the atomic details of how they inhibit the enzyme and a notable contrast to another recently reported thiophene-based inhibitor.
Nature Communications | 2016
Simone M. Schoenwaelder; Roxane Darbousset; Susan L. Cranmer; Hayley S. Ramshaw; Stephanie Orive; Sharelle A. Sturgeon; Yuping Yuan; Yu Yao; James R. Krycer; Joanna M. Woodcock; Jessica Maclean; Stuart M. Pitson; Zhaohua Zheng; Darren C. Henstridge; Dianne E. van der Wal; Elizabeth E. Gardiner; Michael C. Berndt; Robert K. Andrews; David E. James; Angel F. Lopez; Shaun P. Jackson
The 14-3-3 family of adaptor proteins regulate diverse cellular functions including cell proliferation, metabolism, adhesion and apoptosis. Platelets express numerous 14-3-3 isoforms, including 14-3-3ζ, which has previously been implicated in regulating GPIbα function. Here we show an important role for 14-3-3ζ in regulating arterial thrombosis. Interestingly, this thrombosis defect is not related to alterations in von Willebrand factor (VWF)–GPIb adhesive function or platelet activation, but instead associated with reduced platelet phosphatidylserine (PS) exposure and procoagulant function. Decreased PS exposure in 14-3-3ζ-deficient platelets is associated with more sustained levels of metabolic ATP and increased mitochondrial respiratory reserve, independent of alterations in cytosolic calcium flux. Reduced platelet PS exposure in 14-3-3ζ-deficient mice does not increase bleeding risk, but results in decreased thrombin generation and protection from pulmonary embolism, leading to prolonged survival. Our studies define an important role for 14-3-3ζ in regulating platelet bioenergetics, leading to decreased platelet PS exposure and procoagulant function.
ACS Chemical Biology | 2013
Zhaohua Zheng; Michelle S. Miller; Ian G. Jennings; Philip E. Thompson
The p110β isoform of PI3 kinase (PI3Kβ) has been implicated in pathological disorders such as thrombosis and cancer and a number of PI3Kβ-selective inhibitors have recently progressed into clinical studies. Although crystallography studies identify a binding site conformation favored by the inhibitors, no specific interaction explains the observed selectivity. Using site-directed mutagenesis we have identified a specific tyrosine residue of the binding site Y778 that dictates the ability of the PI3Kβ isoform to bind these inhibitors. When mutated to isoleucine, PI3Kβ has reduced ability to present a specific cryptic binding site into which a range of reported PI3Kβ inhibitors can bind, and conversely when tyrosine is introduced into the same position in PI3Kα, the same inhibitors gain potency. The results provide a cogent explanation for the selectivity profiles displayed by these PI3K inhibitors and maybe others as well.
Bioorganic & Medicinal Chemistry Letters | 2013
Michelle S. Miller; Jo-Anne Pinson; Zhaohua Zheng; Ian G. Jennings; Philip E. Thompson
Phosphoinositide 3-kinases (PI3K) hold significant therapeutic potential as novel targets for the treatment of cancer. ZSTK474 (4a) is a potent, pan-PI3K inhibitor currently under clinical evaluation for the treatment of cancer. Structural studies have shown that derivatisation at the 5- or 6-position of the benzimidazole ring may influence potency and isoform selectivity. However, synthesis of these derivatives by the traditional route results in a mixture of the two regioisomers. We have developed a straightforward regioselective synthesis that gave convenient access to 5- and 6-methoxysubstituted benzimidazole derivatives of ZSTK474. While 5-methoxy substitution abolished activity at all isoforms, the 6-methoxy substitution is consistently 10-fold more potent. This synthesis will allow convenient access to further 6-position derivatives, thus allowing the full scope of the structure-activity relationships of ZSTK474 to be probed.
Platelets | 2017
Taryn N. Green; Justin R. Hamilton; Marie-Christine Morel-Kopp; Zhaohua Zheng; Ting Yu T Chen; James I. Hearn; Peng P. Sun; Jack U. Flanagan; Deborah Young; P. Alan Barber; Matthew J. During; Christopher Ward; Maggie L. Kalev-Zylinska
Abstract GluN1 is a mandatory component of N-methyl-D-aspartate receptors (NMDARs) best known for their roles in the brain, but with increasing evidence for relevance in peripheral tissues, including platelets. Certain anti-GluN1 antibodies reduce brain infarcts in rodent models of ischaemic stroke. There is also evidence that human anti-GluN1 autoantibodies reduce neuronal damage in stroke patients, but the underlying mechanism is unclear. This study investigated whether anti-GluN1-mediated neuroprotection involves inhibition of platelet function. Four commercial anti-GluN1 antibodies were screened for their abilities to inhibit human platelet aggregation. Haematological parameters were examined in rats vaccinated with GluN1. Platelet effects of a mouse monoclonal antibody targeting the glycine-binding region of GluN1 (GluN1-S2) were tested in assays of platelet activation, aggregation and thrombus formation. The epitope of anti-GluN1-S2 was mapped and the mechanism of antibody action modelled using crystal structures of GluN1. Our work found that rats vaccinated with GluN1 had a mildly prolonged bleeding time and carried antibodies targeting mostly GluN1-S2. The monoclonal anti-GluN1-S2 antibody (from BD Biosciences) inhibited activation and aggregation of human platelets in the presence of adrenaline, adenosine diphosphate, collagen, thrombin and a protease-activated receptor 1-activating peptide. When human blood was flowed over collagen-coated surfaces, anti-GluN1-S2 impaired thrombus growth and stability. The epitope of anti-GluN1-S2 was mapped to α-helix H located within the glycine-binding clamshell of GluN1, where the antibody binding was computationally predicted to impair opening of the NMDAR channel. Our results indicate that anti-GluN1-S2 inhibits function of human platelets, including dense granule release and thrombus growth. Findings add to the evidence that platelet NMDARs regulate thrombus formation and suggest a novel mechanism by which anti-GluN1 autoantibodies limit stroke-induced neuronal damage.
Bioorganic & Medicinal Chemistry Letters | 2016
Rick Morrison; Zhaohua Zheng; Ian G. Jennings; Philip E. Thompson; Jasim Al-Rawi
To continue our study of 2-morpholino-benzoxazine based compounds, which show useful activity against PI3K family enzymes or antiplatelet activity, we designed and synthesized a series of linear 6.7-fused, 5,6-angular fused and 7,8-angular fused-aryl-morpholino-naphth-oxazines. The compounds were prepared from substituted 2-hydroxynaphthoic acid to give the corresponding thioxo analogues 8, 9, 15 and 19. The thioxo products were then converted to the morpholino substituted analogue. The aryl group was introduced by Suzuki coupling of bromo precursors. The products were evaluated for activity at PI3K family enzymes and as platelet aggregation inhibitors and compared to reported unsubstituted analogues. The linear 6.7-fused product 13a and 13b were moderated potent but selective PI3Kδ isoform inhibitors (IC50=7.7 and 5.61μM). Good antiplatelet activity was noticed for the angular 7,8-fused compounds 22a, b, k and l with IC50=3.0,14.0, 2.0 and 5.0μM respectively. The antiplatelet activity is independent of PDE3.
ACS Medicinal Chemistry Letters | 2015
Simon J. Mountford; Zhaohua Zheng; Krithika Sundaram; Ian G. Jennings; Justin R. Hamilton; Philip E. Thompson
The Class II PI3 kinases are emerging from the shadows of their Class I cousins. The data emerging from PIK3C2 genetic modification studies and from siRNA knockdown suggest important roles in physiology and pathology. With some well-studied Class I isoform inhibitors showing strong Class II activity and a wealth of crystallographic information available, the structural similarity of these isoforms to Class I provides both the opportunity and the challenge in design of selective pharmacological inhibitors.
Australian Journal of Chemistry | 2012
Jo Anne Pinson; Oleg Schmidt-Kittler; Mark Frazzetto; Zhaohua Zheng; Ian G. Jennings; Kenneth W. Kinzler; Bert Vogelstein; David K. Chalmers; Philip E. Thompson
The thiazolidinedione, compound 1, has previously shown pan-inhibition of the phosphoinositide 3-kinase (PI3K) class I isoforms. We hypothesized the derivatization of the thiazolidinedione core of compound 1 could introduce isoform selectivity. We report the synthesis, characterization, and inhibitory activity of a novel series of 4-iminothiazolidin-2-ones for inhibition of the class I PI3K isoforms. Their synthesis was successfully achieved by multiple pathways described in this paper. Initial in vitro data of 28 analogues demonstrated poor inhibition of all class I PI3K isoforms. However, we identified an alternate target, the phosphodiesterases, and present preliminary screening results showing improved inhibitory activity.