Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhaohua Zhong is active.

Publication


Featured researches published by Zhaohua Zhong.


Scandinavian Journal of Gastroenterology | 2009

miR-122 affects the viability and apoptosis of hepatocellular carcinoma cells

Xia Wu; Shuaiqin Wu; Lei Tong; Tian Luan; Lexun Lin; Shulan Lu; Wenran Zhao; Qianqian Ma; Huimin Liu; Zhaohua Zhong

Abstract Objective. miR-122 is highly abundant in liver and a hepato-specific microRNA. There is evidence to show that miR-122 expression is down-regulated in human hepatocellular carcinoma (HCC). It is not known whether miR-122 affects the cellular behavior of hepatoma cells. The aim of this study was to investigate the effects of miR-122 on the viability and apoptosis of hepatoma cells. Material and methods. The viability and apoptosis of Huh-7 and HepG2 cells treated with miR-122 or miR-122 antisense RNA (anti-miR-122) were analyzed by adenosine triphosphate (ATP)-based luminescent assay, annexin V-based flow cytometry, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) detection. The miR-122 coding genes in both cell lines were sequenced. Results. Although two putative promoter sequences for the miR-122 gene at 18q21.31 were detected, the miR-122 coding sequence was missing in HepG2 cells, which might be the reason for the absence of miR-122 expression. There was no significant difference between the viabilities of HepG2 cells transfected with miR-122 and mock HepG2 cells (p >0.05). However, the viability of Huh-7 transfected with anti-miR-122 was significantly elevated at 24, 36, and 48 h posttransfection compared with that of mock cells (p <0.01). Both the flow cytometry and TUNEL assay showed that the apoptotic level of Huh-7 transfected with anti-miR-122 was significantly decreased at 48 h posttransfection (p <0.01). Conclusions. miR-122 down-regulated the viability but up-regulated the apoptosis of hepatoma cell Huh-7. The absence of miR-122 expression in HepG2 cells was due to the loss of the miR-122 coding sequence in chromosome 18. These results imply that aberrant expression of miR-122 may contribute to hepatocarcinogenesis.


Antiviral Research | 2012

MiR-342-5p suppresses coxsackievirus B3 biosynthesis by targeting the 2C-coding region.

Ying Qin; Lei Tong; Shuo Wu; Qiang Wang; Qingguo Jiao; Zhiwei Guo; Lexun Lin; Ruixue Wang; Wenran Zhao; Zhaohua Zhong

Coxsackievirus B type 3 (CVB3) is one of the major pathogens associated with human heart disease. miRNAs are a class of short, noncoding RNA that can post-transcriptionally modulate gene expression. By comparing the CVB3 genome and miR-342-5p sequences, we found there were potential miR-342-5p targets in the CVB3 genome. To verify the effect of miR-342-5p on CVB3 biosynthesis, HeLa cells were infected with a Renilla luciferase (RLuc)-expressing CVB3 variant (RLuc-CVB3). We observed that miR-342-5p could significantly inhibit the expression of RLuc in infected cells. In HeLa cells infected with an enhanced green fluorescence protein (EGFP)-expressing CVB3 variant (EGFP-CVB3), EGFP expression was also significantly inhibited by miR-342-5p. The inhibitory effect of miR-342-5p on EGFP expression in EGFP-CVB3-infected cells could be reversed by transfection with anti-miR-342-5p oligonucleotide (AMO-miR-342-5p). Moreover, RNA and protein biosynthesis in wild-type CVB3 was significantly inhibited by miR-342-5p. By mutating the putative targets of miR-342-5p in the 2C-coding region, a sequence, nt4989-nt5015, was identified as the miR-342-5p target. The conserved nt4989-nt5015 sequences of CVB type 1-5 suggest miR-342-5p may exert its inhibitory effect in other types of coxsackievirus besides CVB3. Western blotting indicated that miR-342-5p could indeed suppress protein expression in CVB type 1 and 5. There was a moderate abundance of miR-342-5p in the gut, heart, and brain of Balb/c mice, suggesting that miR-342-5p may interact with CVB3 in vivo. Taken together, these results indicate that miR-342-5p can inhibit CVB3 biosynthesis by targeting its 2C-coding region and therefore may be a potential therapeutic agent in the treatment of CVB3 infection.


Nucleic Acids Research | 2013

MiR-10a* up-regulates coxsackievirus B3 biosynthesis by targeting the 3D-coding sequence

Lei Tong; Lexun Lin; Shuo Wu; Zhiwei Guo; Tianying Wang; Ying Qin; Ruixue Wang; Xiaoyan Zhong; Xia Wu; Yan Wang; Tian Luan; Qiang Wang; Yunxia Li; Xiaofeng Chen; Fengmin Zhang; Wenran Zhao; Zhaohua Zhong

MicroRNAs (miRNAs) are small non-coding RNAs that can posttranscriptionally regulate gene expression by targeting messenger RNAs. During miRNA biogenesis, the star strand (miRNA*) is generally degraded to a low level in the cells. However, certain miRNA* express abundantly and can be recruited into the silencing complex to regulate gene expression. Most miRNAs function as suppressive regulators on gene expression. Group B coxsackieviruses (CVB) are the major pathogens of human viral myocarditis and dilated cardiomyopathy. CVB genome is a positive-sense, single-stranded RNA. Our previous study shows that miR-342-5p can suppress CVB biogenesis by targeting its 2C-coding sequence. In this study, we found that the miR-10a duplex could significantly up-regulate the biosynthesis of CVB type 3 (CVB3). Further study showed that it was the miR-10a star strand (miR-10a*) that augmented CVB3 biosynthesis. Site-directed mutagenesis showed that the miR-10a* target was located in the nt6818–nt6941 sequence of the viral 3D-coding region. MiR-10a* was detectable in the cardiac tissues of suckling Balb/c mice, suggesting that miR-10a* may impact CVB3 replication during its cardiac infection. Taken together, these data for the first time show that miRNA* can positively modulate gene expression. MiR-10a* might be involved in the CVB3 cardiac pathogenesis.


The International Journal of Biochemistry & Cell Biology | 2013

MiR-122 modulates type I interferon expression through blocking suppressor of cytokine signaling 1

Aimei Li; Wuqi Song; Jun Qian; Yujun Li; Junming He; Qingmeng Zhang; Wenhui Li; Aixia Zhai; Wenping Kao; Yunlong Hu; Hui Li; Jing Wu; Hong Ling; Zhaohua Zhong; Fengmin Zhang

MiR-122 is a liver-specific miRNA. Recent studies demonstrated that the interferon (IFN) therapy efficacy is poor in the hepatitis C virus (HCV)-infected patients with lower miR-122 abundance in the livers. The hepatocarcinoma patients also have low miR-122 levels in their livers. We previously found that the IFN expression was reduced when miR-122 was knocked down in human oligodendrocytes. The mechanism is unclear. In this study, the miR-122-abundant cell Huh7 was used to explore the regulatory mechanism of miR-122 on type I IFN expression. We found that miR-122 significantly increased the type I IFN expression in Huh7 cells, while knocking down miR-122 decreased the type I IFN expression. By screening potential miR-122 targets among the negative regulators in IFN signaling pathways, we found that there were putative miR-122 targets in the suppressor of cytokine signaling 1 (SOCS1) mRNA. Over-expressing miR-122 decreased the SOCS1 expression by 50.55% in Huh7 cells, while knocking down miR-122 increased SOCS1 expression by 62.56%. Using a green fluorescence protein (EGFP) fused SOCS1-expressing plasmid, the SOCS1-EGFP fluorescence intensity and protein were lower in miR-122 mimic-treated cells than those in mock-miRNA-treated cells, while miR-122 knockdown significantly increased the SOCS1-EGFP fluorescence intensity and protein expression. Mutations in the nt359-nt375 region abandoned the impact of miR-122 on SOCS1-EGFP expression. Taken together, SOCS1 is a target of miR-122. MiR-122 can regulate the type I IFN expression through modulating the SOCS1 expression.


Cancer Letters | 2011

S-allylmercaptocysteine effectively inhibits the proliferation of colorectal cancer cells under in vitro and in vivo conditions

Desen Liang; Ying Qin; Wenran Zhao; Xia Zhai; Zhiwei Guo; Ruixue Wang; Lei Tong; Lexun Lin; He Chen; Yong-Chuan Wong; Zhaohua Zhong

S-allylmercaptocysteine (SAMC), one of the water-soluble organosulfur garlic derivatives, has been demonstrated as a suppressive agent against some tumors. The effects of SAMC on the proliferation and metastasis of colorectal cancer (CRC) under in vitro and in vivo conditions were evaluated here. The viabilities and migrations of CRC cells SW480, SW620, Caco-2 treated with SAMC were measured by MTT, scratch-wound, and transwell assays. The in vivo anticancer effect of SAMC against luciferase-expressing SW620 xenografts in mice was determined by bioluminescence imaging and histopathology observation. The apoptosis of SAMC-treated CRC cells was examined by Western blotting. The results demonstrate that SAMC could effectively suppress the growth and metastasis of colorectal cancer cells both in vivo and in vitro. The anticancer effect of SAMC was related to the decreased proliferation and increased apoptosis as well as necrosis of cancer cells. Oral administration of SAMC in the quantity/concentration used had no apparent toxic side effect on the vital organs of the experimental mice. Taken together, the proliferation and metastasis of CRC cells can be significantly suppressed by SAMC treatment under both in vitro and in vivo conditions. SAMC may thus be a promising candidate for CRC chemotherapy.


Antiviral Research | 2010

Modulation of miR-122 on persistently Borna disease virus infected human oligodendroglial cells

Jun Qian; Aixia Zhai; Wenping Kao; Yujun Li; Wuqi Song; Yingmei Fu; Xiaobei Chen; Qingmeng Zhang; Jing Wu; Hui Li; Zhaohua Zhong; Hong Ling; Fengmin Zhang

Using RNAhybrid software we found the predicted binding of complementary sequences between miR-122 and viral mRNAs, may be important for the antiviral effect of miR-122 on Borna disease virus (BDV). A moderate expression of miR-122 was identified in human oligodendroglial cells (OL), but with a much lower level of miR-122 in BDV persistent infection (OL/BDV) and cells transfected with BDV gene expression vectors. Over-expression of miR-122 and specific blocking experiments demonstrated that miR-122 was able to specifically inhibit BDV protein synthesis, viral gene replication and transcription, and induce the secretion/synthesis of interferon (IFN) in OL and OL/BDV cells. The abolishment of miR-122 by AMO-122 inhibited endogenous IFN induction by IFN-beta. These results indicate that miR-122 can exert direct antiviral function by inhibiting BDV translation and replication on one hand, while acting indirectly through IFN to increase the host innate immunity to modulate the virus-host interactions on the other hand.


Antiviral Research | 2013

Borna disease virus encoded phosphoprotein inhibits host innate immunity by regulating miR-155

Aixia Zhai; Jun Qian; Wenping Kao; Aimei Li; Yujun Li; Junming He; Qingmeng Zhang; Wuqi Song; Yingmei Fu; Jing Wu; Xiaobei Chen; Hui Li; Zhaohua Zhong; Hong Ling; Fengmin Zhang

It has been reported that the Borna disease virus (BDV) encoded phosphoprotein (P protein) can inhibit the activity of Traf family member-associated NF-kappaB activator (TANK)-binding kinase 1 (TBK-1), thus preventing the induction of type I interferon (IFN). However, the effects of microRNA on the regulation of BDV infection and the hosts immune response have not been characterized. miR-155 was predicted to be complementary to the BDV P mRNA by RNAhybrid software. Here, we showed that miR-155 was down-regulated in BDV persistently infected human oligodendroglial (OL/BDV) cells and that the BDV P protein, but not the X protein, directly inhibited miR-155 expression in cells. When miR-155 was over-expressed, the inhibition of type I IFNs by BDV in cells was reversed, and the expression of type I IFNs was increased. When miR-155 expression was specifically blocked, cellular IFN expression and the induction of IFN by poly I:C treatment were suppressed. Furthermore, miR-155 promoted type I IFN production by targeting suppressor of cytokine signaling 1 (SOCS1) and SOCS3. Mutations in the nt1138-nt1158 region of SOCS3 abandoned the impact of miR-155 on the expression of SOCS3-enhanced green fluorescent protein (EGFP). The levels of BDV P mRNA and protein were significantly decreased in OL/BDV cells when miR-155 was over-expressed; however, miR-155-mutation did not affect the expression of BDV P-EGFP. Thus, BDV persistent infection inhibited the expression of type I IFNs through the suppression of miR-155, and miR-155 played an important immune regulatory role in BDV persistent infection.


Virology | 2012

A functional nuclear localization sequence in the VP1 capsid protein of coxsackievirus B3

Tianying Wang; Bohai Yu; Lexun Lin; Xia Zhai; Yelu Han; Ying Qin; Zhiwei Guo; Shuo Wu; Xiaoyan Zhong; Yan Wang; Lei Tong; Fengmin Zhang; Xiaoning Si; Wenran Zhao; Zhaohua Zhong

Abstract The capsid proteins of some RNA viruses can translocate to the nucleus and interfere with cellular phenotypes. In this study we found that the VP1 capsid protein of coxsackievirus B3 (CVB3) was dominantly localized in the nucleus of the cells transfected with VP1-expressing plasmid. The VP1 nuclear localization also occurred in the cells infected with CVB3. Truncation analysis indicated that the VP1 nuclear localization sequence located near the C-terminal. The substitution of His220 with threonine completely abolished its translocation. The VP1 proteins of other CVB types might have the nuclear localization potential because this region was highly conserved. Moreover, the VP1 nuclear localization induced cell cycle deregulation, including a prolonged S phase and shortened G2-M phase. Besides these findings, we also found a domain between Ala72 and Phe106 that caused the VP1 truncates dotted distributed in the cytoplasm. Our results suggest a new pathogenic mechanism of CVB.


Journal of Cellular and Molecular Medicine | 2014

From cell membrane to the nucleus: an emerging role of E-cadherin in gene transcriptional regulation

Wenjun Du; Xi Liu; Guiling Fan; Xingsheng Zhao; Yanying Sun; Tianzhen Wang; Ran Zhao; Guangyu Wang; Ci Zhao; Yuanyuan Zhu; Fei Ye; Xiaoming Jin; Fengmin Zhang; Zhaohua Zhong; Xiaobo Li

E‐cadherin is a well‐known mediator of cell–cell adherens junctions. However, many other functions of E‐cadherin have been reported. Collectively, the available data suggest that E‐cadherin may also act as a gene transcriptional regulator. Here, evidence supporting this claim is reviewed, and possible mechanisms of action are discussed. E‐cadherin has been shown to modulate the activity of several notable cell signalling pathways, and given that most of these pathways in turn regulate gene expression, we proposed that E‐cadherin may regulate gene transcription by affecting these pathways. Additionally, E‐cadherin has been shown to accumulate in the nucleus where documentation of an E‐cadherin fragment bound to DNA suggests that E‐cadherin may directly regulate gene transcription. In summary, from the cell membrane to the nucleus, a role for E‐cadherin in gene transcription may be emerging. Studies specifically focused on this potential role would allow for a more thorough understanding of this transmembrane glycoprotein in mediating intra‐ and intercellular activities.


Virus Research | 2014

AUF1 is recruited to the stress granules induced by coxsackievirus B3

Shuo Wu; Lexun Lin; Wenran Zhao; Xiaobo Li; Yan Wang; Xiaoning Si; Tianying Wang; Heng Wu; Xia Zhai; Xiaoyan Zhong; Shuoyang Gao; Lei Tong; Zhikai Xu; Zhaohua Zhong

Stress granules (SGs) are cytoplasmic granules that are formed in cells when stress occurs. In this study, we found that SGs formed in cells infected with coxsackievirus B3 (CVB3), evidenced with the co-localization of some accepted SG markers in the viral infection-induced granules. We further discovered that adenosine-uridine (AU)-rich element RNA binding factor 1 (AUF1), which can bind to mRNAs and regulate their translation, was recruited to the SGs in response to high dose of CVB3 by detecting the co-localization of AUF1 with SG markers. Similar results were also observed in the enterovirus 71 (EV71)-infected cells. Finally, we demonstrated that AUF1 was also recruited to arsenite-induced SGs, suggesting that the recruitment of AUF1 to SG is not a specific response to viral infection. In summary, our data indicate that both CVB3 and EV71 infections can induce SG formation, and AUF1 is a novel SG component upon the viral infections. Our findings may shed light on understanding the picornavirus-host interaction.

Collaboration


Dive into the Zhaohua Zhong's collaboration.

Top Co-Authors

Avatar

Fengmin Zhang

Harbin Medical University

View shared research outputs
Top Co-Authors

Avatar

Wenran Zhao

Harbin Medical University

View shared research outputs
Top Co-Authors

Avatar

Lexun Lin

Harbin Medical University

View shared research outputs
Top Co-Authors

Avatar

Lei Tong

Harbin Medical University

View shared research outputs
Top Co-Authors

Avatar

Yan Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Tianying Wang

Harbin Medical University

View shared research outputs
Top Co-Authors

Avatar

Xiaoyan Zhong

Harbin Medical University

View shared research outputs
Top Co-Authors

Avatar

Shuo Wu

Harbin Medical University

View shared research outputs
Top Co-Authors

Avatar

Wuqi Song

Harbin Medical University

View shared research outputs
Top Co-Authors

Avatar

Xia Zhai

Harbin Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge