Zhaohui Li
University of Oxford
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zhaohui Li.
Biotechnology Advances | 2014
Zhaohui Li; Zhanfeng Cui
Compelling evidence suggests the limitation and shortcomings of the current and well established cell culture method using multi-well plates, flasks and Petri dishes. These are particularly important when cell functions are sensitive to the local microenvironment, cell-cell and cell-extracellular matrix interactions. There is a clear need for advanced cell culture systems which mimic in vivo and more physiological conditions. This review summarises and analyses recent progress in three dimensional (3D) cell culture with perfusion as the next generation cell culture tools, while excluding engineered tissue culture where three dimensional scaffold has to be used for structural support and perfusion for overcoming mass transfer control. Apart from research activities in academic community, product development in industry is also included in this review.
Soft Matter | 2009
Michaela Kreiner; Chandramouli R. Chillakuri; Patricia Pereira; Michael Fairhead; Zhaohui Li; Helen J. Mardon; Stephen A. Holt; Christopher F. van der Walle
Integrin α5β1 binds the human 9th–10th type III fibronectin domain pair (FIII9–10) to mediate cell attachment and spreading. FIII9–10 mutants with increased conformational stability (FIII9′10) or highly restricted interdomain mobility (FIII9′10-CC) support cell spreading to greater and lesser extents, respectively. We have used neutron reflectivity to show that the surface adsorbed layers of the wild-type and mutant proteins are remarkably different. At bulk concentrations of protein equivalent to those used in cell spreading assays, the surface coverage of FIII9–10 was 14% compared to 31% for FIII9′10 and 100% for FIII9′10-CC. For FIII9′10-CC, three distinct transitions in the packing and orientation of the domain pair were observed. No similar transitions were observed for FIII9–10 and only a transition to bilayer was observed for FIII9′10. We discuss these observations by analogy to the surface pressure area isotherm of surfactants, with reference to the electrostatic surface potentials and conformational stabilities of the domain pairs. Data for the binding of purified integrin α5β1 receptors to adsorbed FIII9′10-CC were fitted with an integrin layer thickness of 130 A. This indicates a movement of the integrin α5β1 headpiece away from its position in the compact ‘bent’ conformation. Thus, neutron reflectivity should prove to be a useful technique for the determination of the averaged integrin conformation upon binding to various ligands.
PLOS ONE | 2016
Yang Zhao; Qingxi Liu; He Sun; Deyong Chen; Zhaohui Li; Beiyuan Fan; Julian George; Chengcheng Xue; Zhanfeng Cui; Junbo Wang; Jian Chen
Electrical property characterization of stem cells could be utilized as a potential label-free biophysical approach to evaluate the differentiation process. However, there has been a lack of technology or tools that can quantify the intrinsic cellular electrical markers (e.g., specific membrane capacitance (Cspecific membrane) and cytoplasm conductivity (σcytoplasm)) for a large amount of stem cells or differentiated cells. In this paper, a microfluidic platform enabling the high-throughput quantification of Cspecific membrane and σcytoplasm from hundreds of single neural stem cells undergoing differentiation was developed to explore the feasibility to characterize the neural stem cell differentiation process without biochemical staining. Experimental quantification using biochemical markers (e.g., Nestin, Tubulin and GFAP) of neural stem cells confirmed the initiation of the differentiation process featured with gradual loss in cellular stemness and increased cell markers for neurons and glial cells. The recorded electrical properties of neural stem cells undergoing differentiation showed distinctive and unique patterns: 1) in the suspension culture before inducing differentiation, a large distribution and difference in σcytoplasm among individual neural stem cells was noticed, which indicated heterogeneity that may result from the nature of suspension culture of neurospheres; and 2) during the differentiation in adhering monolayer culture, significant changes and a large difference in Cspecific membrane were located indicating different expressions of membrane proteins during the differentiation process, and a small distribution difference in σcytoplasm was less significant that indicated the relatively consistent properties of cytoplasm during the culture. In summary, significant differences in Cspecific membrane and σcytoplasm were observed during the neural stem cell differentiation process, which may potentially be used as label-free biophysical markers to monitor this process.
Journal of Toxicology and Environmental Health | 2012
Elisa Raquel Anastácio Ferraz; Zhaohui Li; Olga Boubriak; Danielle Palma de Oliveira
During the dyeing process in baths approximately 10 to 15% of the dyes used are lost and reach industrial effluents, thus polluting the environment. Studies showed that some classes of dyes, mainly azo dyes and their by-products, exert adverse effects on humans and local biota, since the wastewater treatment systems and water treatment plants were found to be ineffective in removing the color and reducing toxicity of some dyes. In the present study, the toxicity of the azo dyes disperse orange 1 (DO1), disperse red 1 (DR1), and disperse red 13 (DR13) was evaluated in HepG2 cells grown in monolayers or in three dimensional (3D) culture. Hepatotoxicity of the dyes was measured using 3-(4,5-dimethylthiazol-2yl)2,5-diphenyltetrazolium (MTT) and cell counting kit 8 (CCK-8) assays after 24, 48, and 72 h of incubation of cells with 3 different concentrations of the azo dyes. The dye DO1 only reduced the mitochondrial activity in HepG2 cells grown in a monolayer after 72 h incubation, while the dye DR1 showed this deleterious effect in both monolayer and 3D culture. In contrast, dye DR13 decreased the mitochondrial activity after 24, 48, and 72 h of exposure in both monolayer and 3D culture. With respect to dehydrogenase activity, only the dye DR13 diminished the activity of this enzyme after 72 h of exposure in both monolayer and 3D culture. Our results clearly demonstrated that exposure to the studied dyes induced cytotoxicity in HepG2 cells.
PLOS ONE | 2013
Zhaohui Li; He Sun; Jianbin Zhang; Haijiao Zhang; Fanyu Meng; Zhanfeng Cui
Increasing individuals diagnosed with type II diabetes pose a strong demand for the development of more effective anti-diabetic drugs. However, expensive, ethically controversial animal-based screening for anti-diabetic compounds is not always predictive of the human response. The use of in vitro cell-based models in research presents obviously ethical and cost advantages over in vivo models. This study was to develop an in vitro three-dimensional (3D) perfused culture model of islets (Islet TF) for maintaining viability and functionality longer for diabetic drug efficacy tests. Briefly fresh isolated rat islets were encapsulated in ultrapure alginate and the encapsulated islets were cultured in TissueFlex®, a multiple, parallel perfused microbioreactor system for 7 days. The encapsulated islets cultured statically in cell culture plates (3D static) and islets cultured in suspension (2D) were used as the comparisons. In this study we demonstrate for the first time that Islet TF model can maintain the in vitro islet viability, and more importantly, the elevated functionality in terms of insulin release and dynamic responses over a 7-day culture period. The Islet TF displays a high sensitivity in responding to drugs and drug dosages over conventional 2D and 3D static models. Actual drug administration in clinics could be simulated using the developed Islet TF model, and the patterns of insulin release response to the tested drugs were in agreement with the data obtained in vivo. Islet TF could be a more predictive in vitro model for routine short- and long-term anti-diabetic drug efficacy testing.
Scientific Reports | 2017
Xiao Wan; Steven Ball; Frances Willenbrock; Shaoyang Yeh; Nikola Vlahov; Delia Koennig; Marcus Green; Graham Brown; Sanjeeva Jeyaretna; Zhaohui Li; Zhanfeng Cui; Hua Ye; Eric O’Neill
Pharmaceutical research requires pre-clinical testing of new therapeutics using both in-vitro and in-vivo models. However, the species specificity of non-human in-vivo models and the inadequate recapitulation of physiological conditions in-vitro are intrinsic weaknesses. Here we show that perfusion is a vital factor for engineered human tissues to recapitulate key aspects of the tumour microenvironment. Organotypic culture and human tumour explants were allowed to grow long-term (14–35 days) and phenotypic features of perfused microtumours compared with those in the static culture. Differentiation status and therapeutic responses were significantly different under perfusion, indicating a distinct biological response of cultures grown under static conditions. Furthermore, heterogeneous co-culture of tumour and endothelial cells demonstrated selective cell-killing under therapeutic perfusion versus episodic delivery. We present a perfused 3D microtumour culture platform that sustains a more physiological tissue state and increased viability for long-term analyses. This system has the potential to tackle the disadvantages inherit of conventional pharmaceutical models and is suitable for precision medicine screening of tumour explants, particularly in hard-to-treat cancer types such as brain cancer which suffer from a lack of clinical samples.
Biotechnology Progress | 2016
Yueting Wu; Jiachen Sun; Julian George; Hua Ye; Zhanfeng Cui; Zhaohui Li; Qingxi Liu; Yaozhou Zhang; Dan Ge; Yang Liu
An in vitro three‐dimensional (3D) cell culture system that can mimic organ and tissue structure and function in vivo will be of great benefit for drug discovery and toxicity testing. In this study, the neuroprotective properties of the three most prevalent flavonoid monomers extracted from EGb 761 (isorharmnetin, kaempferol, and quercetin) were investigated using the developed 3D stem cell‐derived neural co‐culture model. Rat neural stem cells were differentiated into co‐culture of both neurons and astrocytes at an equal ratio in the developed 3D model and standard two‐dimensional (2D) model using a two‐step differentiation protocol for 14 days. The level of neuroprotective effect offered by each flavonoid was found to be aligned with its effect as an antioxidant and its ability to inhibit Caspase‐3 activity in a dose‐dependent manner. Cell exposure to quercetin (100 µM) following oxidative insult provided the highest levels of neuroprotection in both 2D and 3D models, comparable with exposure to 100 µM of Vitamin E, whilst exposure to isorhamnetin and kaempferol provided a reduced level of neuroprotection in both 2D and 3D models. At lower dosages (10 µM flavonoid concentration), the 3D model was more representative of results previously reported in vivo. The co‐cultures of stem cell derived neurons and astrocytes in 3D hydrogel scaffolds as an in vitro neural model closely replicates in vivo results for routine neural drug toxicity and efficacy testing.
Journal of Biomedical Materials Research Part A | 2011
Zhaohui Li; Michaela Kreiner; RuAngelie Edrada-Ebel; Zhanfeng Cui; Christopher F. van der Walle; Helen J. Mardon
A method to functionalize alginate by introducing monomeric or self-assembling (tetrameric) fibronectin (FN) domains is described, leading to a functional scaffold, which is used for three dimensional (3D) culture of human endometrial stromal cells (EnSCs). EnSCs encapsulated in the functional alginate were cultured under perfusion using the TissueFlex® platform, a multiple parallel microbioreactor system for 3D cell culture. The effect of the novel scaffold and the effect of perfusion were examined. Cell viability, proliferation, and extracellular matrix (ECM) deposition were determined and the results compared with those obtained with cells encapsulated in non-functionalized alginate, and also those without perfusion. Staining for focal adhesions and actin showed maximal cell adhesion only for alginate-tetrameric FN scaffolds under perfusion, associated with a significant increase in cell number over 7 days culture; in contrast to poor cell adhesion and a decrease in cell number for non-functionalized alginate scaffolds (irrespective of perfused/static culture) and 3D static culture (irrespective of the scaffold). Conjugation of alginate to FN was an absolute requirement to attenuate the loss of cell metabolic activity over 7 days culture. ECM deposition for blank alginate and alginate-monomeric FN was similar, but increased around 2-fold and 3-fold for alginate-tetrameric FN under static and perfusion culture, respectively. It is concluded that the requirement for EnSC engagement with multivalent integrin α5β1 ligands and perfused culture are both essential as a first step toward endometrial tissue engineering.
Biochemical and Biophysical Research Communications | 2011
Zhaohui Li; Michaela Kreiner; Christopher F. van der Walle; Helen J. Mardon
Progress towards endometrial tissue engineering for modelling endometrial diseases and infertility is frustrated by the inability to mimic the fibronectin (FN) extracellular matrix required by human endometrial stromal cells (EnSCs). Here we show that this is because of the requirement to present integrin α5β1 (the FN receptor) ligands in specifically oriented, polyvalent displays; by engineering controlled self-assembly of the 9th-10th type III FN domain pair (FIII9-10, the minimal integrin α5β1 ligand) immobilised in a specific orientation to cell culture surfaces. The fraction of adherent EnSCs seen to spread increased significantly for the multimeric ligand surfaces in the order: tetramer>trimer>dimer>monomer. The extent of EnSC spread morphology also increased in the same order, with the tetrameric ligand supporting a morphology most similar to that supported by FN. Our data suggest that only higher-order multimers of FIII9-10 will fully promote cell spreading mediated through integrin α5β1 binding.
Journal of Applied Biomaterials & Functional Materials | 2018
Qingxi Liu; Zijiang Zhang; Yupeng Liu; Zhanfeng Cui; Tong-Cun Zhang; Zhaohui Li; Wenjian Ma
Introduction: Three-dimensional (3D) collagen scaffold models, due to their ability to mimic the tissue and organ structure in vivo, have received increasing interest in drug discovery and toxicity evaluation. Methods: In this study, we developed a perfused 3D model and studied cellular response to cytotoxic drugs in comparison with traditional 2D cell cultures as evaluated by cancer drug cisplatin. Results: Cancer cells grown in perfused 3D environments showed increased levels of reactive oxygen species (ROS) production compared to the 2D culture. As determined by growth analysis, cells in the 3D culture, after forming a spheroid, were more resistant to the cancer drug cisplatin compared to that of the 2D cell culture. In addition, 3D culturing cells showed elevated level of ROS, indicating a physiological change or the formation of a microenvironment that resembles tumor cells in vivo. Conclusions: These data revealed that cellular response to drugs for cells growing in 3D environments are dramatically different from that of 2D cultured cells. Thus, the perfused 3D collagen scaffold model we report here might be a potentially very useful tool for drug analysis.