Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhaohui Qian is active.

Publication


Featured researches published by Zhaohui Qian.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Crystal structure of mouse coronavirus receptor-binding domain complexed with its murine receptor

Guiqing Peng; Dawei Sun; Kanagalaghatta R. Rajashankar; Zhaohui Qian; Kathryn V. Holmes; Fang Li

Coronaviruses have evolved diverse mechanisms to recognize different receptors for their cross-species transmission and host-range expansion. Mouse hepatitis coronavirus (MHV) uses the N-terminal domain (NTD) of its spike protein as its receptor-binding domain. Here we present the crystal structure of MHV NTD complexed with its receptor murine carcinoembryonic antigen-related cell adhesion molecule 1a (mCEACAM1a). Unexpectedly, MHV NTD contains a core structure that has the same β-sandwich fold as human galectins (S-lectins) and additional structural motifs that bind to the N-terminal Ig-like domain of mCEACAM1a. Despite its galectin fold, MHV NTD does not bind sugars, but instead binds mCEACAM1a through exclusive protein–protein interactions. Critical contacts at the interface have been confirmed by mutagenesis, providing a structural basis for viral and host specificities of coronavirus/CEACAM1 interactions. Sugar-binding assays reveal that galectin-like NTDs of some coronaviruses such as human coronavirus OC43 and bovine coronavirus bind sugars. Structural analysis and mutagenesis localize the sugar-binding site in coronavirus NTDs to be above the β-sandwich core. We propose that coronavirus NTDs originated from a host galectin and retained sugar-binding functions in some contemporary coronaviruses, but evolved new structural features in MHV for mCEACAM1a binding.


PLOS ONE | 2013

Role of the Spike Glycoprotein of Human Middle East Respiratory Syndrome Coronavirus (MERS-CoV) in Virus Entry and Syncytia Formation

Zhaohui Qian; Samuel R. Dominguez; Kathryn V. Holmes

Little is known about the biology of the emerging human group c betacoronavirus, Middle East Respiratory Syndrome coronavirus (MERS-CoV). Because coronavirus spike glycoproteins (S) mediate virus entry, affect viral host range, and elicit neutralizing antibodies, analyzing the functions of MERS-CoV S protein is a high research priority. MERS-CoV S on lentivirus pseudovirions mediated entry into a variety of cell types including embryo cells from New World Eptesicus fuscus bats. Surprisingly, a polyclonal antibody to the S protein of MHV, a group a murine betacoronavirus, cross-reacted in immunoblots with the S2 domain of group c MERS-CoV spike protein. MERS pseudovirions released from 293T cells contained only uncleaved S, and pseudovirus entry was blocked by lysosomotropic reagents NH4Cl and bafilomycin and inhibitors of cathepsin L. However, when MERS pseudovirions with uncleaved S protein were adsorbed at 4°C to Vero E6 cells, brief trypsin treatment at neutral pH triggered virus entry at the plasma membrane and syncytia formation. When 293T cells producing MERS pseudotypes co-expressed serine proteases TMPRSS-2 or -4, large syncytia formed at neutral pH, and the pseudovirions produced were non-infectious and deficient in S protein. These experiments show that if S protein on MERS pseudovirions is uncleaved, then viruses enter by endocytosis in a cathepsin L-dependent manner, but if MERS-CoV S is cleaved, either during virus maturation by serine proteases or on pseudovirions by trypsin in extracellular fluids, then viruses enter at the plasma membrane at neutral pH and cause massive syncytia formation even in cells that express little or no MERS-CoV receptor. Thus, whether MERS-CoV enters cells within endosomes or at the plasma membrane depends upon the host cell type and tissue, and is determined by the location of host proteases that cleave the viral spike glycoprotein and activate membrane fusion.


American Journal of Respiratory Cell and Molecular Biology | 2013

Innate Immune Response of Human Alveolar Type II Cells Infected with Severe Acute Respiratory Syndrome–Coronavirus

Zhaohui Qian; Emily A. Travanty; Lauren Oko; Karen Edeen; Andrew Berglund; Jieru Wang; Yoko Ito; Kathryn V. Holmes; Robert J. Mason

Severe acute respiratory syndrome (SARS)-coronavirus (CoV) produces a devastating primary viral pneumonia with diffuse alveolar damage and a marked increase in circulating cytokines. One of the major cell types to be infected is the alveolar type II cell. However, the innate immune response of primary human alveolar epithelial cells infected with SARS-CoV has not been defined. Our objectives included developing a culture system permissive for SARS-CoV infection in primary human type II cells and defining their innate immune response. Culturing primary human alveolar type II cells at an air-liquid interface (A/L) improved their differentiation and greatly increased their susceptibility to infection, allowing us to define their primary interferon and chemokine responses. Viral antigens were detected in the cytoplasm of infected type II cells, electron micrographs demonstrated secretory vesicles filled with virions, virus RNA concentrations increased with time, and infectious virions were released by exocytosis from the apical surface of polarized type II cells. A marked increase was evident in the mRNA concentrations of interferon-β and interferon-λ (IL-29) and in a large number of proinflammatory cytokines and chemokines. A surprising finding involved the variability of expression of angiotensin-converting enzyme-2, the SARS-CoV receptor, in type II cells from different donors. In conclusion, the cultivation of alveolar type II cells at an air-liquid interface provides primary cultures in which to study the pulmonary innate immune responses to infection with SARS-CoV, and to explore possible therapeutic approaches to modulating these innate immune responses.


PLOS ONE | 2013

Human coronavirus HKU1 infection of primary human type II alveolar epithelial cells: cytopathic effects and innate immune response.

Samuel R. Dominguez; Emily A. Travanty; Zhaohui Qian; Robert J. Mason

Because they are the natural target for respiratory pathogens, primary human respiratory epithelial cells provide the ideal in vitro system for isolation and study of human respiratory viruses, which display a high degree of cell, tissue, and host specificity. Human coronavirus HKU1, first discovered in 2005, has a worldwide prevalence and is associated with both upper and lower respiratory tract disease in both children and adults. Research on HCoV-HKU1 has been difficult because of its inability to be cultured on continuous cell lines and only recently it was isolated from clinical specimens using primary human, ciliated airway epithelial cells. Here we demonstrate that HCoV-HKU1 can infect and be serially propagated in primary human alveolar type II cells at the air-liquid interface. We were not able to infect alveolar type I-like cells or alveolar macrophages. Type II alveolar cells infected with HCoV-HKU1 demonstrated formation of large syncytium. At 72 hours post inoculation, HCoV-HKU1 infection of type II cells induced increased levels of mRNAs encoding IL29,CXCL10, CCL5, and IL-6 with no significant increases in the levels of IFNβ. These studies demonstrate that type II cells are a target cell for HCoV-HKU1 infection in the lower respiratory tract, that type II alveolar cells are immune-competent in response to infection exhibiting a type III interferon and proinflammatory chemokine response, and that cell to cell spread may be a major factor for spread of infection. Furthermore, these studies demonstrate that human alveolar cells can be used to isolate and study novel human respiratory viruses that cause lower respiratory tract disease.


Journal of Virology | 2015

Identification of the Receptor-Binding Domain of the Spike Glycoprotein of Human Betacoronavirus HKU1

Zhaohui Qian; Xiuyuan Ou; Luiz Gustavo Bentim Góes; Christina Osborne; Anna M. Castano; Kathryn V. Holmes; Samuel R. Dominguez

ABSTRACT Coronavirus spike (S) glycoproteins mediate receptor binding, membrane fusion, and virus entry and determine host range. Murine betacoronavirus (β-CoV) in group A uses the N-terminal domain (NTD) of S protein to bind to its receptor, whereas the β-CoVs severe acute respiratory syndrome CoV in group B and Middle East respiratory syndrome CoV in group C and several α-CoVs use the downstream C domain in their S proteins to recognize their receptor proteins. To identify the receptor-binding domain in the spike of human β-CoV HKU1 in group A, we generated and mapped a panel of monoclonal antibodies (MAbs) to the ectodomain of HKU1 spike protein. They did not cross-react with S proteins of any other CoV tested. Most of the HKU1 spike MAbs recognized epitopes in the C domain between amino acids 535 and 673, indicating that this region is immunodominant. Two of the MAbs blocked HKU1 virus infection of primary human tracheal-bronchial epithelial (HTBE) cells. Preincubation of HTBE cells with a truncated HKU1 S protein that includes the C domain blocked infection with HKU1 virus, but preincubation of cells with truncated S protein containing only the NTD did not block infection. These data suggest that the receptor-binding domain (RBD) of HKU1 spike protein is located in the C domain, where the spike proteins of α-CoVs and β-CoVs in groups B and C bind to their specific receptor proteins. Thus, two β-CoVs in group A, HKU1 and murine CoV, have evolved to use different regions of their spike glycoproteins to recognize their respective receptor proteins. IMPORTANCE Mouse hepatitis virus, a β-CoV in group A, uses the galectin-like NTD in its spike protein to bind its receptor protein, while HCoV-OC43, another β-CoV in group A, uses the NTD to bind to its sialic-acid containing receptor. In marked contrast, the NTD of the spike glycoprotein of human respiratory β-CoV HKU1, which is also in group A, does not bind sugar. In this study, we showed that for the spike protein of HKU1, the purified C domain, downstream of the NTD, could block HKU1 virus infection of human respiratory epithelial cells, and that several monoclonal antibodies that mapped to the C domain neutralized virus infectivity. Thus, the receptor-binding domain of HKU1 spike glycoprotein is located in the C domain. Surprisingly, two β-CoVs in group A, mouse hepatitis virus and HKU1, have evolved to use different regions of their spike glycoproteins to recognize their respective receptors.


Journal of General Virology | 2014

Isolation, propagation, genome analysis and epidemiology of HKU1 betacoronaviruses

Samuel R. Dominguez; Susmita Shrivastava; Andrew Berglund; Zhaohui Qian; Luiz Gustavo Bentim Góes; Rebecca A. Halpin; Nadia Fedorova; Amy Ransier; Philip Weston; Edison Luiz Durigon; José Antonio Jerez; Christine C. Robinson; Christopher D. Town; Kathryn V. Holmes

From 1 January 2009 to 31 May 2013, 15 287 respiratory specimens submitted to the Clinical Virology Laboratory at the Childrens Hospital Colorado were tested for human coronavirus RNA by reverse transcription-PCR. Human coronaviruses HKU1, OC43, 229E and NL63 co-circulated during each of the respiratory seasons but with significant year-to-year variability, and cumulatively accounted for 7.4-15.6 % of all samples tested during the months of peak activity. A total of 79 (0.5 % prevalence) specimens were positive for human betacoronavirus HKU1 RNA. Genotypes HKU1 A and B were both isolated from clinical specimens and propagated on primary human tracheal-bronchial epithelial cells cultured at the air-liquid interface and were neutralized in vitro by human intravenous immunoglobulin and by polyclonal rabbit antibodies to the spike glycoprotein of HKU1. Phylogenetic analysis of the deduced amino acid sequences of seven full-length genomes of Colorado HKU1 viruses and the spike glycoproteins from four additional HKU1 viruses from Colorado and three from Brazil demonstrated remarkable conservation of these sequences with genotypes circulating in Hong Kong and France. Within genotype A, all but one of the Colorado HKU1 sequences formed a unique subclade defined by three amino acid substitutions (W197F, F613Y and S752F) in the spike glycoprotein and exhibited a unique signature in the acidic tandem repeat in the N-terminal region of the nsp3 subdomain. Elucidating the function of and mechanisms responsible for the formation of these varying tandem repeats will increase our understanding of the replication process and pathogenicity of HKU1 and potentially of other coronaviruses.


Biopolymers | 2016

Platform technology to generate broadly cross-reactive antibodies to α-helical epitopes in hemagglutinin proteins from influenza a viruses.

Ziqing Jiang; Lajos Gera; Colin T. Mant; Brooke Hirsch; Zhe Yan; Jonathan A. Shortt; David D. Pollock; Zhaohui Qian; Kathryn V. Holmes; Robert S. Hodges

We have utilized a de novo designed two‐stranded α‐helical coiled‐coil template to display conserved α‐helical epitopes from the stem region of hemagglutinin (HA) glycoproteins of influenza A. The immunogens have all the surface‐exposed residues of the native α‐helix in the native HA protein of interest displayed on the surface of the two‐stranded α‐helical coiled‐coil template. This template when used as an immunogen elicits polyclonal antibodies which bind to the α‐helix in the native protein. We investigated the highly conserved sequence region 421–476 of HA by inserting 21 or 28 residue sequences from this region into our template. The cross‐reactivity of the resulting rabbit polyclonal antibodies prepared to these immunogens was determined using a series of HA proteins from H1N1, H2N2, H3N2, H5N1, H7N7, and H7N9 virus strains which are representative of Group 1 and Group 2 virus subtypes of influenza A. Antibodies from region 449–476 were Group 1 specific. Antibodies to region 421–448 showed the greatest degree of cross‐reactivity to Group 1 and Group 2 and suggested that this region has a great potential as a “universal” synthetic peptide vaccine for influenza A.


Nature Communications | 2017

Crystal structure of the receptor binding domain of the spike glycoprotein of human betacoronavirus HKU1

Xiuyuan Ou; Hongxin Guan; Bo Qin; Zhixia Mu; Justyna Aleksandra Wojdyla; Meitian Wang; Samuel R. Dominguez; Zhaohui Qian; Sheng Cui

Human coronavirus (CoV) HKU1 is a pathogen causing acute respiratory illnesses and so far little is known about its biology. HKU1 virus uses its S1 subunit C-terminal domain (CTD) and not the N-terminal domain like other lineage A β-CoVs to bind to its yet unknown human receptor. Here we present the crystal structure of HKU1 CTD at 1.9 Å resolution. The structure consists of three subdomains: core, insertion and subdomain-1 (SD-1). While the structure of the core and SD-1 subdomains of HKU1 are highly similar to those of other β-CoVs, the insertion subdomain adopts a novel fold, which is largely invisible in the cryo-EM structure of the HKU1 S trimer. We identify five residues in the insertion subdomain that are critical for binding of neutralizing antibodies and two residues essential for receptor binding. Our study contributes to a better understanding of entry, immunity and evolution of CoV S proteins.


Journal of Biological Chemistry | 2017

Structural and Molecular Evidence Suggesting Coronavirus-driven Evolution of Mouse Receptor

Guiqing Peng; Joseph R. Pasquarella; Liqing Xu; Zhaohui Qian; Kathryn V. Holmes; Fang Li

Hosts and pathogens are locked in an evolutionary arms race. To infect mice, mouse hepatitis coronavirus (MHV) has evolved to recognize mouse CEACAM1a (mCEACAM1a) as its receptor. To elude MHV infections, mice may have evolved a variant allele from the Ceacam1a gene, called Ceacam1b, producing mCEACAM1b, which is a much poorer MHV receptor than mCEACAM1a. Previous studies showed that sequence differences between mCEACAM1a and mCEACAM1b in a critical MHV-binding CC′ loop partially account for the low receptor activity of mCEACAM1b, but detailed structural and molecular mechanisms for the differential MHV receptor activities of mCEACAM1a and mCEACAM1b remained elusive. Here we have determined the crystal structure of mCEACAM1b and identified the structural differences and additional residue differences between mCEACAM1a and mCEACAM1b that affect MHV binding and entry. These differences include conformational alterations of the CC′ loop as well as residue variations in other MHV-binding regions, including β-strands C′ and C′′ and loop C′C′′. Using pseudovirus entry and protein-protein binding assays, we show that substituting the structural and residue features from mCEACAM1b into mCEACAM1a reduced the viral receptor activity of mCEACAM1a, whereas substituting the reverse changes from mCEACAM1a into mCEACAM1b increased the viral receptor activity of mCEACAM1b. These results elucidate the detailed molecular mechanism for how mice may have kept pace in the evolutionary arms race with MHV by undergoing structural and residue changes in the MHV receptor, providing insight into this possible example of pathogen-driven evolution of a host receptor protein.


Archive | 2012

Strategies for Designing Peptide Immunogens To Elicit α-Helical Conformation-Specific Antibodies Reactive with Native Proteins

Zhe Yan; Wendy J. Hartsock; Zhaohui Qian; Kathryn V. Holmes; Robert S. Hodges

Collaboration


Dive into the Zhaohui Qian's collaboration.

Top Co-Authors

Avatar

Kathryn V. Holmes

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Samuel R. Dominguez

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Robert S. Hodges

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Zhe Yan

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Fang Li

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar

Guiqing Peng

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar

Wendy J. Hartsock

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Xiuyuan Ou

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Andrew Berglund

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge