Zhaojing Zhang
Dalian University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zhaojing Zhang.
Bioresource Technology | 2015
Qiao Ma; Yuanyuan Qu; Wenli Shen; Zhaojing Zhang; Jingwei Wang; Ziyan Liu; Duanxing Li; Huijie Li; Jiti Zhou
In this study, Illumina high-throughput sequencing was used to reveal the community structures of nine coking wastewater treatment plants (CWWTPs) in China for the first time. The sludge systems exhibited a similar community composition at each taxonomic level. Compared to previous studies, some of the core genera in municipal wastewater treatment plants such as Zoogloea, Prosthecobacter and Gp6 were detected as minor species. Thiobacillus (20.83%), Comamonas (6.58%), Thauera (4.02%), Azoarcus (7.78%) and Rhodoplanes (1.42%) were the dominant genera shared by at least six CWWTPs. The percentages of autotrophic ammonia-oxidizing bacteria and nitrite-oxidizing bacteria were unexpectedly low, which were verified by both real-time PCR and fluorescence in situ hybridization analyses. Hierarchical clustering and canonical correspondence analysis indicated that operation mode, flow rate and temperature might be the key factors in community formation. This study provides new insights into our understanding of microbial community compositions and structures of CWWTPs.
Journal of Hazardous Materials | 2017
Wenli Shen; Yuanyuan Qu; Xiaofang Pei; Shuzhen Li; Shengnan You; Jingwei Wang; Zhaojing Zhang; Jiti Zhou
A facile one-pot eco-friendly process for synthesis of gold nanoparticles (AuNPs) with high catalytic activity was achieved using cell-free extracts of Aspergillus sp. WL-Au as reducing, capping and stabilizing agents. The surface plasmon resonance band of UV-vis spectrum at 532nm confirmed the presence of AuNPs. Transmission electron microscopy images showed that quite uniform spherical AuNPs were synthesized and the average size of nanoparticles increased from 4nm to 29nm with reaction time. X-ray diffraction analysis verified the formation of nano-crystalline gold particles. Fourier transform infrared spectra showed the presence of functional groups on the surface of biosynthesized AuNPs, such as OH, NH, CO, CH, COH and COC groups, which increased the stability of AuNPs. The biogenic AuNPs could serve as a highly efficient catalyst for 4-nitrophenol reduction. The reaction rate constant was linearly correlated with the concentration of AuNPs, which increased from 0.59min-1 to 1.51min-1 with the amount of AuNPs increasing form 1.46×10-6 to 17.47×10-6mmol. Moreover, the as-synthesized AuNPs exhibited a remarkable normalized catalytic activity (4.04×105min-1mol-1), which was much higher than that observed for AuNPs synthesized by other biological and conventional chemical methods.
PLOS ONE | 2015
Xuwang Zhang; Yuanyuan Qu; Qiao Ma; Zhaojing Zhang; Duanxing Li; Jingwei Wang; Wenli Shen; E Shen; Jiti Zhou
Indole, as a typical N-heteroaromatic compound existed in coking wastewater, can be used for bio-indigo production. The microbial production of indigo from indole has been widely reported during the last decades using culture-dependent methods, but few studies have been carried out by microbial communities. Herein, three activated sludge systems stimulated by different aromatics, i.e. naphthalene plus indole (G1), phenol plus indole (G2) and indole only (G3), were constructed for indigo production from indole. During the operation, G1 produced the highest indigo yield in the early stage, but it switched to G3 in the late stage. Based on LC-MS analysis, indigo was the major product in G1 and G3, while the purple product 2-(7-oxo-1H-indol-6(7H)-ylidene) indolin-3-one was dominant in G2. Illumina MiSeq sequencing of 16S rRNA gene amplicons was applied to analyze the microbial community structure and composition. Detrended correspondence analysis (DCA) and dissimilarity tests showed that the overall community structures of three groups changed significantly during the operation (P<0.05). Nevertheless, the bacteria assigned to phylum Proteobacteria, family Comamonadaceae, and genera Diaphorobacter, Comamonas and Aquamicrobium were commonly shared dominant populations. Pearson correlations were calculated to discern the relationship between microbial communities and indigo yields. The typical indigo-producing populations Comamonas and Pseudomonas showed no positive correlations with indigo yields, while there emerged many other genera that exhibited positive relationships, such as Aquamicrobium, Truepera and Pusillimonas, which had not been reported for indigo production previously. The present study should provide new insights into indigo bio-production by microbial communities from indole.
Genome Announcements | 2015
Qiao Ma; Yuanyuan Qu; Zhaojing Zhang; Pengpeng Li; Hongzhi Tang
ABSTRACT Cupriavidus sp. strain IDO has been shown to efficiently transform indole, and the genus of Cupriavidus has been described as a promising cell factory for polyhydroxyalkanoate synthesis from low-cost wastes. Here, we report the draft genome sequence of strain IDO, which may provide useful genetic information on indole metabolism and polyhydroxyalkanoate production.
Journal of Environmental Sciences-china | 2015
Yuanyuan Qu; E Shen; Qiao Ma; Zhaojing Zhang; Ziyan Liu; Wenli Shen; Jingwei Wang; Duanxing Li; Huijie Li; Jiti Zhou
Indole, a typical nitrogen heterocyclic aromatic pollutant, is extensively spread in industrial wastewater. Microbial degradation has been proven to be a feasible approach to remove indole, whereas the microbial resources are fairly limited. A bacterial strain designated as SHE was isolated and found to be an efficient indole degrader. It was identified as Cupriavidus sp. according to 16S rRNA gene analysis. Strain SHE could utilize indole as the sole carbon source and almost completely degrade 100mg/L of indole within 24hr. It still harbored relatively high indole degradation capacity within pH4-9 and temperature 25°C-35°C. Experiments also showed that some heavy metals such as Mn(2+), Pb(2+) and Co(2+) did not pose severe inhibition on indole degradation. Based on high performance liquid chromatography-mass spectrum analysis, isatin was identified as a minor intermediate during the process of indole biodegradation. A major yellow product with m/z 265.0605 (C15H8N2O3) was generated and accumulated, suggesting a novel indole conversion pathway existed. Genome analysis of strain SHE indicated that there existed a rich set of oxidoreductases, which might be the key reason for the efficient degradation of indole. The robust degradation ability of strain SHE makes it a promising candidate for the treatment of indole containing wastewater.
Water Science and Technology | 2015
Qiao Ma; Yuanyuan Qu; Wenli Shen; Jingwei Wang; Zhaojing Zhang; Xuwang Zhang; Hao Zhou; Jiti Zhou
The ecological effects of carbon nanotubes (CNTs) have been a worldwide research focus due to their extensive release and accumulation in environment. Activated sludge acting as an important gathering place will inevitably encounter and interact with CNTs, while the microbial responses have been rarely investigated. Herein, the activated sludges from six wastewater treatment plants were acclimated and treated with single-walled carbon nanotubes (SWCNTs) under identical conditions. Illumina high-throughput sequencing was applied to in-depth analyze microbial changes and results showed SWCNTs differently perturbed the alpha diversity of the six groups (one increase, two decrease, three no change). Furthermore, the microbial community structures were shifted, and specific bacterial performance in each group was different. Since the environmental and operational factors were identical in each group, it could be concluded that microbial responses to SWCNTs were highly depended on the original community structures.
Microbiological Research | 2015
Qiao Ma; Yuanyuan Qu; Xuwang Zhang; Wenli Shen; Ziyan Liu; Jingwei Wang; Zhaojing Zhang; Jiti Zhou
Colloids and Surfaces A: Physicochemical and Engineering Aspects | 2016
Xuwang Zhang; Yuanyuan Qu; Wenli Shen; Jingwei Wang; Huijie Li; Zhaojing Zhang; Shuzhen Li; Jiti Zhou
Biochemical Engineering Journal | 2013
Yuanyuan Qu; Bingwen Xu; Xuwang Zhang; Qiao Ma; Hao Zhou; Chunlei Kong; Zhaojing Zhang; Jiti Zhou
Physica E-low-dimensional Systems & Nanostructures | 2017
Yuanyuan Qu; Xiaofang Pei; Wenli Shen; Xuwang Zhang; Jingwei Wang; Zhaojing Zhang; Shuzhen Li; Shengnan You; Fang Ma; Jiti Zhou