Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhaomin Wang is active.

Publication


Featured researches published by Zhaomin Wang.


Applied Optics | 2016

Close-range photogrammetry with light field camera: from disparity map to absolute distance

Peng Yang; Zhaomin Wang; Yizhen Yan; Weijuan Qu; Hongying Zhao; Anand Asundi; Lei Yan

A new approach to measure the 3D profile of a texture object is proposed utilizing light field imaging, in which three key steps are required: a disparity map is first obtained by detecting the slopes in the epipolar plane image with the multilabel technique; the intrinsic parameters of the light field camera are then extracted by camera calibration; at last, the relationship between disparity values and real distances is built up by depth calibration. In the last step, a linear calibration method is proposed to achieve accurate results. Furthermore, the depth error is also investigated and compensated for by reusing the checkerboard pattern. The experimental results are in good agreement with the 3D models, and also indicate that the light field imaging is a promising 3D measurement technique.


Optics Express | 2016

Quantitative measurement of thermal lensing in diode-side-pumped Nd:YAG laser by use of digital holographic interferometry

Jianglei Di; Yang Yu; Zhaomin Wang; Weijuan Qu; Chee Yuen Cheng; Jianlin Zhao

Thermal lensing in diode-side-pumped Nd:YAG laser has been measured quantitatively using digital holographic interferometry. A series of holograms, carrying the information of the laser rod under different pump currents, are recorded with a CCD and reconstructed numerically. The optical path difference induced by the thermal lensing and the corresponding evolution process under different currents are obtained accordingly. Further, the thermal lensing diopters, induced aberrations, and its Zernike coefficients are calculated. The proposed method can be applied in the thermal lensing measurement and the optimization design of a laser resonator.


International Conference on Experimental Mechanics 2014 | 2015

Two-dimensional phase unwrapping algorithms for fringe pattern analysis: a comparison study

Fang Yang; Zhaomin Wang; Yongfu Wen; Weijuan Qu

Phase unwrapping is a process to reconstruct the absolute phase from a wrapped phase map whose range is (−π, π]. As the absolute phase cannot be directly extracted from the fringe pattern, phase unwrapping is therefore required by phasemeasure techniques. Currently, many phase unwrapping algorithms have been proposed. In this paper, four popular phase unwrapping algorithms, including the Goldstein’s branch cut method, the quality-guided method, the Phase Unwrapping via Max Flow (PUMA) method, and the phase estimation using adaptive regularization based on local smoothing method (PERALS), are reviewed and discussed. Detailed accuracy comparisons of these methods are provided as well.


Applied Optics | 2016

Focal length calibration of an electrically tunable lens by digital holography

Zhaomin Wang; Weijuan Qu; Fang Yang; Anand Asundi

The electrically tunable lens (ETL) is a novel current-controlled adaptive optical component which can continuously tune its focus in a specific range via changing its surface curvature. To quantitatively characterize its tuning power, here we assume the ETL to be a pure phase object and present a novel calibration method to dynamically measure its wavefront by use of digital holographic microscopy (DHM). The least squares method is then used to fit the radius of curvature of the wavefront. The focal length is obtained by substituting the radius into the Zemax model of the ETL. The behavior curve between the focal length of the ETL and its driven current is drawn, and a quadratic mathematic model is set up to characterize it. To verify our model, an ETL and offset lens combination is proposed and applied to ETL-based transport of intensity equation (TIE) phase retrieval microscopy. The experimental result demonstrates the calibration works well in TIE phase retrieval in comparison with the phase measured by DHM.


International Conference on Experimental Mechanics 2014 | 2015

A new phase error compensation method in digital holographic microscopy

Zhaomin Wang; Weijuan Qu; Yongfu Wen; Fang Yang; Anand Asundi

In this paper we present a new method to compensate for phase aberrations and image distortion with recording single digital hologram in digital holographic microscopy. In our method, tilt is removed from the abberrated phase map first. Then an area of interest (AOI) is generated by flood filled algorithm. By fitting AOI with discrete orthogonal Zernike polynomials, error phase map in the form of a series of Zernike polynomials is obtained. Final result can be calculated by subtracting the error phase map from the abberrated phase map. Through applying our method in microlens testing, phase aberrations and image distortion introduced by microscope objective are well suppressed.


Optical Engineering | 2016

Online fringe projection profilometry based on scale-invariant feature transform

Hongru Li; Guoying Feng; Peng Yang; Zhaomin Wang; Shouhuan Zhou; Anand Asundi

Abstract. An online fringe projection profilometry (OFPP) based on scale-invariant feature transform (SIFT) is proposed. Both rotary and linear models are discussed. First, the captured images are enhanced by “retinex” theory for better contrast and an improved reprojection technique is carried out to rectify pixel size while keeping the right aspect ratio. Then the SIFT algorithm with random sample consensus algorithm is used to match feature points between frames. In this process, quick response code is innovatively adopted as a feature pattern as well as object modulation. The characteristic parameters, which include rotation angle in rotary OFPP and rectilinear displacement in linear OFPP, are calculated by a vector-based solution. Moreover, a statistical filter is applied to obtain more accurate values. The equivalent aligned fringe patterns are then extracted from each frame. The equal step algorithm, advanced iterative algorithm, and principal component analysis are eligible for phase retrieval according to whether the object moving direction accords with the fringe direction or not. The three-dimensional profile of the moving object can finally be reconstructed. Numerical simulations and experimental results verified the validity and feasibility of the proposed method.


International Conference on Optical and Photonic Engineering (icOPEN 2015) | 2015

Shape measurement of micro-objects using a common-path digital holographic microscopy (CDHM) with dual wavelength

Yongfu Wen; Weijuan Qu; Zhaomin Wang; Fang Yang; Chee Yuen Cheng

Digital holography microscopy (DHM) allows fast, nondestructive, high resolution and full-field 3D shape measurement of micro-objects. However, a drawback of many experimental arrangements of DHM is the requirement for a separate reference wave, which results in a measurement stability and interference fringe contrast decrease. In this paper, a common-path DHM (CDHM) is explored which only requires a single object illumination wave. Due to the fact that conventional phase unwrapping algorithms are not suitable for the complex and step surface of object, the dual wavelength linear regression phase unwrapping algorithm is introduced. By comparing two wrapped phase maps reconstructed at different wavelengths, the maps can be accurately unwrapped with straightforward and less timeconsuming. From the CDHM system and the phase unwrapping algorithm introduced, we experimentally obtained high quality depth profiles of micro-objects.


International Conference on Experimental Mechanics 2014 | 2015

Capability enhancement in compact digital holographic microscopy

Weijuan Qu; Yongfu Wen; Zhaomin Wang; Fang Yang; Anand Asundi

A compact reflection digital holographic microscopy (DHM) system integrated with the light source and optical interferometer is developed for 3D topographic characterization and real-time dynamic inspection for Microelectromechanical systems (MEMS). Capability enhancement methods in lateral resolution, axial resolving range and large field of view for the compact DHM system are presented. To enhance the lateral resolution, the numerical aperture of a reflection DHM system is analyzed and optimum designed. To enhance the axial resolving range, dual wavelengths are used to extend the measuring range. To enable the large field of view, stitching of the measurement results is developed in the user-friendly software. Results from surfaces structures on silicon wafer, micro-optics on fused silica and dynamic inspection of MEMS structures demonstrate applications of this compact reflection digital holographic microscope for technical inspection in material science.


AOPC 2017: 3D Measurement Technology for Intelligent Manufacturing | 2017

A reflection TIE system for 3D inspection of wafer structures

Yizhen Yan; Weijuan Qu; Lei Yan; Zhaomin Wang; Hongying Zhao

A reflection TIE system consisting of a reflecting microscope and a 4f relay system is presented in this paper, with which the transport of intensity equation (TIE) is applied to reconstruct the three-dimensional (3D) profile of opaque micro objects like wafer structures for 3D inspection. As the shape of an object can affect the phases of waves, the 3D information of the object can be easily acquired with the multiple phases at different refocusing planes. By electronically controlled refocusing, multi-focal images can be captured and used in solving TIE to obtain the phase and depth of the object. In order to validate the accuracy and efficiency of the proposed system, the phase and depth values of several samples are calculated, and the experimental results is presented to demonstrate the performance of the system.


Journal of Visualized Experiments | 2016

Compact Lens-less Digital Holographic Microscope for MEMS Inspection and Characterization.

Thomas Bourgade; Sun Jianfei; Zhaomin Wang; Rosmin Elsa; Anand Asundi

A micro-electro-mechanical-system (MEMS) is a widely used component in many industries, including energy, biotechnology, medical, communications, and automotive. However, effective inspection and characterization metrology systems are needed to ensure the functional reliability of MEMS. This study presents a system based on digital holography as a tool for MEMS metrology. Digital holography has gained increasing attention in the past 20 years. With the fast development and decreasing cost of sensor arrays, resolution of such systems has increased broadening potential applications. Thus, it has attracted attention from both research and industry sides as a potential reliable tool for industrial metrology. Indeed, by recording the interference pattern between an object beam (which contains sample height information) and a reference beam on a CCD camera, one can retrieve the quantitative phase information of an object. However, most of digital holographic systems are bulky and thus not easy to implement on industry production lines. The novelty of the system presented is that it is lens-less and thus very compact. In this study, it is shown that the Compact Digital Holographic Microscope (CDHM) can be used to evaluate several characteristics typically consider as criteria in MEMS inspections. The surface profiles of MEMS in both static and dynamic conditions are presented. Comparison with AFM is investigated to validate the accuracy of the CDHM.

Collaboration


Dive into the Zhaomin Wang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anand Asundi

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hongru Li

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Yang Yu

Ngee Ann Polytechnic

View shared research outputs
Researchain Logo
Decentralizing Knowledge