Zhaoming Li
Zhengzhou University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zhaoming Li.
PLOS ONE | 2013
Zhaoming Li; Tian Tian; Feng Lv; Yu Chang; Xinhua Wang; Lei Zhang; Xin Li; Ling Li; Wang Ma; Jingjing Wu; Mingzhi Zhang
Six1 is one of the transcription factors that act as master regulators of development and are frequently dysregulated in cancers. However, the role of Six1 in pancreatic cancer is not clear. Here we show that the relative expression of Six1 mRNA is increased in pancreatic cancer and correlated with advanced tumor stage. In vitro functional assays demonstrate that forced overexpression of Six1 significantly enhances the growth rate and proliferation ability of pancreatic cancer cells. Knockdown of endogenous Six1 decreases the proliferation of these cells dramatically. Furthermore, Six1 promotes the growth of pancreatic cancer cells in a xenograft assay. We also show that the gene encoding cyclin D1 is a direct transcriptional target of Six1 in pancreatic cancer cells. Overexpression of Six1 upregulates cyclin D1 mRNA and protein, and significantly enhances the activity of the cyclin D1 promoter in PANC-1 cells. We demonstrate that Six1 promotes cell cycle progression and proliferation by upregulation of cyclin D1. These data suggest that Six1 is overexpressed in pancreatic cancer and may contribute to the increased cell proliferation through upregulation of cyclin D1.
Oncology Letters | 2014
Lijuan Han; Feifei Liu; Ruping Li; Zhaoming Li; Xinfeng Chen; Zhiyuan Zhou; Xudong Zhang; Tengpeng Hu; Yi Zhang; Ken H. Young; Suke Sun; Jianguo Wen; Mingzhi Zhang
Extranodal natural killer/T-cell lymphoma (ENKL) is marked by a profound cellular immune deficiency that may influence the capacity of T cells to extract an efficient antitumor immune response. It has been confirmed that the B7-CD28 pathway may promote tumor immune evasion by providing a negative regulatory signal. The current study analyzed the expression of programmed death 1 (PD-1)/programmed death ligand (PD-L) in ENKL cell lines and tissues. The functional studies were performed to analyze the functional activity of PD-L1 interacting with effective T cells in ENKL. PD-L1 and PD-L2 mRNA levels in ENKL cell lines were markedly upregulated compared with those in normal natural killer cells. The proteins constitutively expressed in the 30 ENKL specimens were significantly higher than in the 20 rhinitis specimens. In addition, PD-L1 and PD-L2 expression were found to closely correlate with certain clinical histopathological parameters. Furthermore, the count of PD-1+ tumor-infiltrating T lymphocytes was found to negatively correlate with the expression of PD-L1 and PD-L2. The PD-1 expression in the CD4+ and CD8+ T-cell subsets of 20 ENKL patients prior to therapy were significantly higher than that of the 10 healthy volunteers. In the functional studies, the cytokines (interleukin-2 and interferon-γ) secreted by CD8+ T cells were inhibited by PD-L1 expression in SNK-6 cells and this was restored with the presence of the PD-L1 blocking antibody. However no direct effect of PD-L1 was identified on CD8+ T-cell apoptosis and CD8+ T-cell cytotoxicity, as assessed by the proliferation of SNK-6 cells in the presence or absence of the neutralizing anti-PD-L1 antibody. The results of the current study revealed that PD-Ls and PD-1 are aberrantly expressed in ENKL and, furthermore, PD-L1 expression in SNK-6 cells was found to inhibit the activity of CD8+ T-cell cytokine secretion. This indicated that the PD-Ls may prevent effective antitumor immunity in vivo by interacting with tumor T cells, which provides important evidence to delineate the cellular immune deficiency mechanism in ENKL. Therefore, PD-1/PD-Ls are predicted to become novel targets for ENKL immunotherapy.
Biochemical and Biophysical Research Communications | 2015
Tian Tian; Aimin Li; Hong Lu; Ran Luo; Mingzhi Zhang; Zhaoming Li
Temozolomide is a novel cytotoxic agent currently used as first-line chemotherapy for glioblastoma multiforme (GBM). However, intrinsic or acquired chemoresistance to temozolomide remains the greatest obstacle to the successful treatment of human GBM. The principal mechanism responsible for this resistance is largely unknown. In the present study, we showed that expression of transcriptional co-activator with PDZ-binding motif (TAZ) in glioma cells correlated with temozolomide chemoresistance in human glioma cells. Overexpression of TAZ promoted temozolomide resistance in U-87MG cells, whereas knockdown of TAZ expression sensitized temozolomide-resistant U-251MG cells to temozolomide. Further, TAZ inhibits temozolomide induced apoptosis via upregulation of MCL-1 (myeloid cell leukemia 1) and high expression of TAZ predicts a poor prognosis for GBM patients. In conclusion, our results suggest that TAZ had a critical role in the resistance to temozolomide in glioma cells, and it may provide a promising target for improving the therapeutic outcome of temozolomide-resistant gliomas.
Biochemical and Biophysical Research Communications | 2013
Zhaoming Li; Tian Tian; Xiaopeng Hu; Xudong Zhang; Feifei Nan; Yu Chang; Feng Lv; Mingzhi Zhang
Paclitaxel resistance remains a major challenge in the treatment of breast cancer. Six1 is a homeodomain-containing transcription factor invloved in the initiation, progression and metastasis of breast cancer. We herein investigate the relationship between Six1 and resistance of paclitaxel in this study. The results indicate that six1 is a mediator of the paclitaxel resistance in breast cancer. The expression level of Six1 in breast cancer cells correlates with their resistance to paclitaxel. On the one hand, forced overexpression of Six1 in Six1-low/paclitaxel-sensitive MCF-7 or HS578T breast cancer cells induce their resistance to paclitaxel treatment directly; On the other hand, knockdown of endogenous Six1 in Six1-high/drug-resistant BT-474 breast cancer cells sensitized these cells to paclitaxel treatment. Besides, Six1 overexpression confers resistance to paclitaxel-mediated apoptosis in breast cancer cells. Furthermore, clinical data and the publicly available breast cancer gene expression datasets display that the association of Six1 expression with paclitaxel sensitivity is clinically relevant. In conclusion, these data suggest that Six1 may function as an important modifier of the paclitaxel response in breast cancer cells, and serve as a potential target for overcoming paclitaxel resistance in breast cancer.
British Journal of Haematology | 2017
Ling Li; Wenjing Duan; Lei Zhang; Xin Li; Xiaorui Fu; Xinhua Wang; Jingjing Wu; Zhenchang Sun; Xudong Zhang; Yu Chang; Feifei Nan; Jiaqin Yan; Zhaoming Li; Ken H. Young; Mingzhi Zhang
We compared the efficacy and safety of gemcitabine, cisplatin, prednisone and thalidomide (GDPT) with standard CHOP regimen (cyclophosphamide, doxorubicin, vincristine, prednisone) for patients with newly diagnosed peripheral T‐cell lymphoma (PTCL) in a prospective randomized controlled and open‐label clinical trial. Between July 2010 and June 2016, 103 patients were randomly allocated into two groups, of whom 52 were treated with GDPT therapy and 51 with CHOP therapy. The 2‐year progression‐free survival (PFS) and overall survival (OS) rates were better in the GDPT group than in the CHOP group (57% vs. 35% for 2‐year PFS, P = 0·0035; 71% vs 50% for 2‐year OS, P = 0·0001). The complete remission rate (CRR) and the overall response rate (ORR) in the GDPT group were higher than in the CHOP group (52% vs. 33%, P = 0·044 for CRR; 67% vs. 49%, P = 0·046 for ORR). Haemocytopenia was the predominant adverse effect, and acute toxicity was moderate, tolerable and well managed in both arms. mRNA expression of ERCC1, RRM1, TUBB3 and TOP2A genes varied among patients but the difference did not reach statistical significance, mainly due to the relatively small sample size. The precise characters of these biomarkers remain to be identified. In conclusion, GDPT is a promising new regimen as potential first‐line therapy against PTCL. This study was registered at www.clinicaltrials.gov as #NCT01664975.
Journal of Huazhong University of Science and Technology-medical Sciences | 2013
Feng Lv; Yang Yu; Bin Zhang; Dong Liang; Zhaoming Li; Wei You
SummaryThe purpose of this study was to verify that a combination of mild hyperthermia and docetaxel chemotherapy produces synergistic antitumor effects and to explore the action mechanisms of this treatment approach. The effects of docetaxel on the proliferation of cells from the estrogen receptor (ER)-positive human breast cancer cell line MCF-7 and the ER-negative human breast cancer cell line MDA-MB-453 were examined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and effective experimental concentrations of docetaxel were determined. The effects of mild hyperthermia plus docetaxel therapy on apoptosis rate in the MCF-7 and MDA-MB-453 human breast cancer cell lines were analyzed by using flow cytometry with Annexin-V fluorescein isothiocyanate (FITC)/propidium iodide (PI) staining. The effects of these combined treatments on cell cycle progression in the MCF-7 and MDA-MB-453 human breast cancer cell lines were examined by using flow cytometry. The effects of these combined treatments on the expression of apoptosis-related proteins and proteins in the mitogen-activated protein kinase (MAPK) pathways were analyzed by using Western blotting. The effects of these combined treatments on the expression of the heat shock protein 70 (HSP70) and the multi-drug resistance (MDR) gene product P-glycoprotein (Pgp) were examined by using Western blotting. The results showed that the half-maximal inhibitory concentration (IC50) of docetaxel for MCF-7 and MDA-MB-453 cells was 19.57±1.12 and 21.64±2.31 μmol/L respectively. Mild hyperthermia with docetaxel therapy could increase apoptosis rate in the MCF-7 and MDA-MB-453 cells. Apoptosis rate in MCF-7 and MDA-MB-453 cells was increased from (23.66±3.59)% and (18.51±3.17)% in docetaxel treatment group to (47.12±6.73)% and (55.16±7.42)% in mild hyperthermia plus docetaxel group, indicating that the mild hyperthermia and docetaxel therapeutic approaches exhibited significant synergistic antitumor effects. Treatments of mild hyperthermia plus docetaxel induced G2/M cell cycle arrest in the MCF-7 and MDA-MB-453 cells. Western blotting demonstrated that proteins in the MAPK pathway were expressed at higher levels in docetaxel-treated cells following mild hypothermia than those in cells treated with docetaxel alone. As compared with blank control group, cells from the mild hyperthermia plus docetaxel group exhibited significantly decreased B-cell lymphoma 2 (Bcl-2) protein expression but slightly increased Bcl-2-associated X protein (Bax) expression. Western blotting results revealed that HSP70 and Pgp expression levels were significantly increased following mild hypothermia. It was concluded that treatments of mild hyperthermia plus docetaxel inhibited the proliferation of human breast cancer cells, promoted apoptosis of breast cancer cells, and produced synergistic antitumor effects.The purpose of this study was to verify that a combination of mild hyperthermia and docetaxel chemotherapy produces synergistic antitumor effects and to explore the action mechanisms of this treatment approach. The effects of docetaxel on the proliferation of cells from the estrogen receptor (ER)-positive human breast cancer cell line MCF-7 and the ER-negative human breast cancer cell line MDA-MB-453 were examined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and effective experimental concentrations of docetaxel were determined. The effects of mild hyperthermia plus docetaxel therapy on apoptosis rate in the MCF-7 and MDA-MB-453 human breast cancer cell lines were analyzed by using flow cytometry with Annexin-V fluorescein isothiocyanate (FITC)/propidium iodide (PI) staining. The effects of these combined treatments on cell cycle progression in the MCF-7 and MDA-MB-453 human breast cancer cell lines were examined by using flow cytometry. The effects of these combined treatments on the expression of apoptosis-related proteins and proteins in the mitogen-activated protein kinase (MAPK) pathways were analyzed by using Western blotting. The effects of these combined treatments on the expression of the heat shock protein 70 (HSP70) and the multi-drug resistance (MDR) gene product P-glycoprotein (Pgp) were examined by using Western blotting. The results showed that the half-maximal inhibitory concentration (IC50) of docetaxel for MCF-7 and MDA-MB-453 cells was 19.57±1.12 and 21.64±2.31 μmol/L respectively. Mild hyperthermia with docetaxel therapy could increase apoptosis rate in the MCF-7 and MDA-MB-453 cells. Apoptosis rate in MCF-7 and MDA-MB-453 cells was increased from (23.66±3.59)% and (18.51±3.17)% in docetaxel treatment group to (47.12±6.73)% and (55.16±7.42)% in mild hyperthermia plus docetaxel group, indicating that the mild hyperthermia and docetaxel therapeutic approaches exhibited significant synergistic antitumor effects. Treatments of mild hyperthermia plus docetaxel induced G2/M cell cycle arrest in the MCF-7 and MDA-MB-453 cells. Western blotting demonstrated that proteins in the MAPK pathway were expressed at higher levels in docetaxel-treated cells following mild hypothermia than those in cells treated with docetaxel alone. As compared with blank control group, cells from the mild hyperthermia plus docetaxel group exhibited significantly decreased B-cell lymphoma 2 (Bcl-2) protein expression but slightly increased Bcl-2-associated X protein (Bax) expression. Western blotting results revealed that HSP70 and Pgp expression levels were significantly increased following mild hypothermia. It was concluded that treatments of mild hyperthermia plus docetaxel inhibited the proliferation of human breast cancer cells, promoted apoptosis of breast cancer cells, and produced synergistic antitumor effects.
Scientific Reports | 2017
Yu Chang; Xiaorui Fu; Zhenchang Sun; Xinli Xie; Ruihua Wang; Zhaoming Li; Xudong Zhang; Guangyao Sheng; Mingzhi Zhang
Positron emission tomography-computed tomography (PET/CT) is widely used for initial staging and monitoring treatment responses in Hodgkin and diffuse large B-cell lymphoma. However, its prognostic value in extranodal natural killer (NK)/T-cell lymphoma (ENKL) remains unclear. Here, we conducted a retrospective study to determine the impact of PET/CT in ENKL. Fifty-two patients newly diagnosed with ENKL were enrolled. Baseline maximum standardized uptake values (SUVmax), whole-body metabolic tumor volume (WBMTV) and whole-body total lesion glycolysis (WBTLG) were recorded. Additionally, interim PET/CT (I-PET) and end-of-treatment PET/CT (E-PET) results were scored using a 5-point scale. Patients were divided into groups using baseline parameter cut-off values; significant differences were found in overall survival (OS) and progression-free survival (PFS) between the high and low WBMTV and WBTLG groups and in OS between the two SUVmax groups. Positive I-PET and E-PET results predicted inferior PFS and OS. A multivariate analysis showed that baseline WBTLG, I-PET and E-PET results were associated with PFS and OS, and baseline SUVmax was an independent predictor of OS. Thus, baseline WBTLG, I-PET and E-PET results are good predictors of PFS and OS in ENKL patients who received L-asparaginase/pegaspargase in their first-line treatment, and baseline SUVmax is a valuable tool for assessing OS.
Oncotarget | 2016
Xudong Zhang; Weiguo Ji; Ruixia Huang; Lifeng Li; Xinhua Wang; Ling Li; Xiaorui Fu; Zhenchang Sun; Zhaoming Li; Qingjiang Chen; Mingzhi Zhang
Natural killer/T-cell lymphoma (NKTCL) is characterized by its highly aggressive nature and rapid progression. MicroRNAs (miRNAs) play key roles in the development of NKTCL. We utilized next-generation Solexa high-throughput sequencing to compare miRNA expression in the SNK-6 and YTS NKTCL cell lines with expression in normal NK cells. We found that 195 miRNAs were upregulated in the SNK-6 cells and 286 miRNAs were upregulated in the YTS cells. Based on those results, we selected six miRNAs, including miRNA-155, and confirmed their expression using real-time polymerase chain reaction. Expression of miRNA-155 was higher in SNK-6 and YKS cells than in normal NK cells. We next determined the levels of miRNA-155 in the serum of healthy individuals and NKTCL patients, and correlated its expression with clinical parameters and inflammatory factors detected using enzyme-linked immunoabsorbent assays. Levels of miRNA-155 were higher in NKTCL patients’ serum than in serum from healthy individuals. miRNA-155 expression was higher in patients with stable or progressive disease (SD+PD) than in those with partial or complete remission (PR+CR). While further studies are needed to clarify the underlying molecular mechanisms, it appears miRNA-155 may be a molecular marker of NKTCL.
Medical Hypotheses | 2015
Tian Tian; Zhaoming Li; Hong Lu
Diabetic retinopathy (DR) is the leading cause of irreversible vision loss in adults. Parkinsons disease (PD) is a chronic progressive neurodegenerative movement disorder characterized by progressive loss of dopaminergic neurons in substantia nigra of midbrain. Evidences suggest that diabetic patients tend to show higher incidence of PD, advocating a shared mechanism between both the diseases. Interestingly, disruption of the dopaminergic system, which is an important causative factor in PD, has also been observed in DR. It is reported that retinal dopamine and tyrosine hydroxylase protein levels are downregulated, and dopaminergic amacrine cells appear to be degenerating in the animal models of DR. Further, injecting the diabetic mice with dopamine-restoring or dopamine-activating drugs already used to treat PD can restore dopamine levels and significantly improve diabetes-associated visual dysfunction in the early stage. Conversely, drugs already in use for insulin resistance also show protective effects in PD. Furthermore, α-Synuclein pathology of PD can be induced solely by high glucose in diabetic animal models. In conclusion, these findings establish an important role of dopamine deficiency as a common contributing factor in DR and PD. The changes in the ocular of diabetes involve dopamine metabolism disturbance, mimicking PD at the molecular level. Consequently, we could consider DR as at least partially the PD like molecular pathology in the eye. Importantly, indicating that dopamine decrease may play a role in DR will lead to a better understanding of the high rate of comorbidity reported between diabetes and PD, and reveal new therapeutic avenues for DR and other disorders that involve dopamine deficiency.
Oncotarget | 2017
Yingjun Wang; Mingzhi Zhang; Huanan Xu; Yifei Wang; Zhaoming Li; Yu Chang; Xinhuan Wang; Xiaorui Fu; Zhiyuan Zhou; Siyuan Yang; Bei Wang; Yufeng Shang
Diffuse large B-cell lymphoma (DLBCL) is one of the leading causes of cancer-related mortality, and responds badly to existing treatment. Thus, it is of urgent need to identify novel prognostic markers and therapeutic targets of DLBCL. Recent studies have shown that long non-coding RNAs (lncRNAs) play an important role in the development of cancer. By using the next generation HiSeq sequencing assay, we determined lncRNAs exhibiting differential expression between DLBCL patients and healthy controls. Then, RT-qPCR was performed for identification in clinical samples and cell materials, and lncRNA PANDA was verified to be down-regulated in DLBCL patients and have considerable diagnostic potential. In addition, decreased serum PANDA level was correlated to poorer clinical outcome and lower overall survival in DLBCL patients. Subsequently, we determined the experimental role of lncRNA PANDA in DLBCL progression. Luciferase reporter assay and chromatin immunoprecipitation assay suggested that lncRNA PANDA was induced by p53 and p53 interacts with the promoter region of PANDA. Cell functional assay further indicated that PANDA functioned as a tumor suppressor gene through the suppression of cell growth by a G0/G1 cell cycle arrest in DLBCL. More importantly, Cignal Signal Transduction Reporter Array and western blot assay showed that lncRNA PANDA inactivated the MAPK/ERK signaling pathway. In conclusion, our integrated approach demonstrates that PANDA in DLBCL confers a tumor suppressive function through inhibiting cell proliferation and silencing MAPK/ERK signaling pathway. Thus, PANDA may be a promising therapeutic target for patients with DLBCL.