Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhaosheng Lin is active.

Publication


Featured researches published by Zhaosheng Lin.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Involvement of multiple signaling pathways in follicular lymphoma transformation: p38-mitogen-activated protein kinase as a target for therapy

Kojo S.J. Elenitoba-Johnson; Stephen D. Jenson; Robert T. Abbott; Robert Palais; Sandra D. Bohling; Zhaosheng Lin; Sheryl R. Tripp; Paul J. Shami; Lai Y. Wang; Robert W. Coupland; Rena Buckstein; Bayardo Perez-Ordonez; Sherrie L. Perkins; Ian D. Dubé; Megan S. Lim

Follicular lymphoma (FL) is the most common form of low-grade non-Hodgkins lymphoma. Transformation to diffuse large B cell lymphoma (DLBCL) is an important cause of mortality. Using cDNA microarray analysis we identified 113 transformation-associated genes whose expression differed consistently between serial clonally related samples of FL and DLBCL occurring within the same individual. Quantitative RT-PCR validated the microarray results and assigned blinded independent group of 20 FLs, 20 DLBCLs, and five transformed lymphoma-derived cell lines with 100%, 70%, and 100% accuracy, respectively. Notably, growth factor cytokine receptors and p38β-mitogen-activated protein kinase (MAPK) were differentially expressed in the DLBCLs. Immunohistochemistry of another blinded set of samples demonstrated expression of phosphorylated p38MAPK in 6/6 DLBCLs and 1/5 FLs, but not in benign germinal centers. SB203580 an inhibitor of p38MAPK specifically induced caspase-3-mediated apoptosis in t(14;18)+/p38MAPK+-transformed FL-derived cell lines. Lymphoma growth was also inhibited in SB203580-treated NOD-SCID mice. Our results implicate p38MAPK dysregulation in FL transformation and suggest that molecular targeting of specific elements within this pathway should be explored for transformed FL therapy.


Laboratory Investigation | 2005

Identification of proteins from formalin-fixed paraffin-embedded cells by LC-MS/MS

David K. Crockett; Zhaosheng Lin; Cecily P. Vaughn; Megan S. Lim; Kojo S.J. Elenitoba-Johnson

There exists a need for robust approaches for tandem mass spectrometry (MS/MS)-based identification of proteins in formalin-fixed paraffin-embedded (FFPE) material. We demonstrate herein the identification of proteins in FFPE material using enzymatic cleavage for extraction of peptides from the FFPE specimen and liquid chromatography (LC) followed by MS/MS. We identified 324 proteins from a 3-year-old FFPE cell-block of a human lymphoma cell line. The identified proteins were assigned to the membrane, cytosol and nucleus, with diverse cellular functions. The results were comparable to those obtained with lysates from a fresh specimen of the lymphoma cell line. Western blotting analysis and immunofluorescence microscopy confirmed the expression of selected proteins. The functional significance of one protein (PKC η) was validated using a PKC inhibitory peptide which resulted in lymphoma cell death in vitro. The ability to identify proteins from FFPE specimens has significant implications for MS/MS-based proteomics of vast repositories of archival primary tissue samples for disease-related discovery research.


Oncogene | 2004

Identification of NPM-ALK interacting proteins by tandem mass spectrometry

David K. Crockett; Zhaosheng Lin; Kojo S.J. Elenitoba-Johnson; Megan S. Lim

Constitutive overexpression of nucleophosmin-anaplastic lymphoma kinase (NPM-ALK) is a key oncogenic event in anaplastic large-cell lymphomas with the characteristic chromosomal aberration t(2;5)(p23;q35). Proteins that interact with ALK tyrosine kinase play important roles in mediating downstream cellular signals, and are potential targets for novel therapies. Using a functional proteomic approach, we determined the identity of proteins that interact with the ALK tyrosine kinase by co-immunoprecipitation with anti-ALK antibody, followed by electrospray ionization and tandem mass spectrometry (MS/MS). A total of 46 proteins were identified as unique to the ALK immunocomplex using monoclonal and polyclonal antibodies, while 11 proteins were identified in the NPM immunocomplex. Previously reported proteins in the ALK signal pathway were identified including PI3-K, Jak2, Jak3, Stat3, Grb2, IRS, and PLCγ1. More importantly, many proteins previously not recognized to be associated with NPM-ALK, but with potential NPM-ALK interacting protein domains, were identified. These include adaptor molecules (SOCS, Rho-GTPase activating protein, RAB35), kinases (MEK kinase 1 and 4, PKC, MLCK, cyclin G-associated kinase, EphA1, JNK kinase, MAP kinase 1), phosphatases (meprin, PTPK, protein phosphatase 2 subunit), and heat shock proteins (Hsp60 precursor). Proteins identified by MS were confirmed by Western blotting and reciprocal immunoprecipitation. This study demonstrates the utility of antibody immunoprecipitation and subsequent peptide identification by tandem mass spectrometry for the elucidation of ALK-binding proteins, and its potential signal transduction pathways.


American Journal of Pathology | 2001

Down-Regulation of Telomerase Activity in Malignant Lymphomas by Radiation and Chemotherapeutic Agents

Zhaosheng Lin; Steve Lim; Mary Anne Viani; Michelle Sapp; Megan S. Lim

The effects of radiation and cytotoxic agents on telomerase activity in lymphoma cells were analyzed by a polymerase chain reaction-based telomeric repeat amplification protocol coupled with an enzyme-linked immunosorbent assay, reverse transcriptase-polymerase chain reaction for the expression of the catalytic subunit of telomerase (hTERT), and by Western blot analysis in three lymphoma cell lines (Jurkat, Raji, CEM-6). Telomeric repeat amplification protocol-enzyme-linked immunosorbent assay demonstrated high basal levels of telomerase activity in all cell lines compared to normal and activated peripheral blood lymphocytes. A significant decrease in telomerase activity was observed in all cell lines after exposure to vincristine for 24 hours. The decrease in telomerase activity paralleled the decrease in cell viability in Jurkat and CEM-6 cells but not in Raji cells. Radiation exposure inhibited the telomerase activity of Jurkat and CEM-6 cells whereas Raji cells were unaffected. Cell cycle analysis demonstrated a significant G(2)/M arrest by cisplatin, VP-16, and vincristine. In contrast to the decline in telomerase activity, the level of hTERT RNA and protein increased. Furthermore, the induction of hTERT was preceded by increased expression of the cyclin-dependent kinase inhibitor, p27/Kip1 protein, and p53. These results indicate that telomerase activity is down-regulated by anti-neoplastic agents in lymphoma cells, however expression of hTERT may not be correlated with telomerase activity. We also show that p27/Kip1 may be involved in the G(2)/M growth arrest induced by anti-neoplastic agents.


Molecular & Cellular Proteomics | 2004

Quantitative Proteomic and Transcriptional Analysis of the Response to the p38 Mitogen-activated Protein Kinase Inhibitor SB203580 in Transformed Follicular Lymphoma Cells

Zhaosheng Lin; David K. Crockett; Stephen D. Jenson; Megan S. Lim; Kojo S.J. Elenitoba-Johnson

The p38 mitogen-activated protein kinase (MAPK) is a key mediator of stress, extracellular-, growth factor-, and cytokine-induced signaling, and has been implicated in the development of cancer. Our previous work showed evidence for p38 MAPK activation in a subset of transformed follicular lymphomas (Elenitoba-Johnson et al. (2003) Proc. Natl. Acad. Sci. U.S.A. 100, 7259). We demonstrated that inhibition of p38 MAPK by SB203580 resulted in dose- and time-dependent caspase-3-mediated apoptosis. In order to further elucidate the basis of the cellular effects of SB203580, we have employed a systems biologic approach involving cDNA microarray and quantitative proteomic analysis of transformed follicular lymphoma derived-cells (OCI Ly-1) treated with SB203580. Gene expression profiling revealed differential expression (≥1.5-fold) of 374 genes/ESTs in cells treated for 3 h and 515 genes/ESTs in cells treated for 21 h. The majority (52% at 3 h and 91% at 21 h) were down-regulated, including genes encoding growth cytokines, transcriptional regulators and cytoskeletal proteins. Quantitative proteomic analysis using ICAT-LC-MS/MS identified 277 differentially expressed proteins at 3 h and 350 proteins at 21 h of treatment with SB203580, the majority of which were also down-regulated. Analysis of functional groups of the differentially expressed proteins implicated components of diverse overlapping pathways including the IL-6/phosphatidylinositol 3-kinase, insulin-like growth factor 2/Ras/Raf, WNT8d/Frizzled, MAPK-activated protein kinase 2, and nuclear factor κB. The differential phosphorylation status of selected kinase-active proteins was validated by Western blotting analysis. Our complementary genomic and proteomic approach reveal the global cellular consequences of SB203580 treatment and provide insights into its growth inhibitory effect on transformed follicular lymphoma cells.


Modern Pathology | 2004

Application of SELDI-TOF mass spectrometry for the identification of differentially expressed proteins in transformed follicular lymphoma.

Zhaosheng Lin; Stephen D. Jenson; Megan S. Lim; Kojo S.J. Elenitoba-Johnson

Completion of the human genome project has focused scientific attention on the development of methods that permit rapid characterization of proteins that are encoded by the genome. Recent improvements in two-dimensional separation techniques in combination with protein identification software/databases and mass spectrometry (MS) now permit rapid comprehensive large-scale analysis of individual proteins within complex protein mixtures. We have performed pairwise comparisons of low-grade and transformed follicular lymphomas (FLs) in order to identify proteins that may be involved in FL progression using surface-enhanced laser desorption/ionization time-of-flight (SELDI-TOF) mass spectrometer (ProteinChip™, Ciphergen Biosystems). This system utilizes preactivated differential binding surfaces to achieve multidimensional chromatography. The protein-bound chips were then analyzed by a SELDI-TOF mass spectrometer to generate protein profiles. In preliminary experiments, we established that the MS data obtained from SELDI-TOF MS were reproducible, and that reduction in sample complexity improved the ability to detect lower abundance proteins. With specific regard to FL transformation, we rapidly identified a number of potential candidate proteins involved in this process. These included an upregulated 32 kDa protein and a down-regulated 11.8 kDa protein. Protein database searches revealed several candidates, among them cyclin D3 (32.5 kDa) and caspase 3 (11.8 kDa) whose differential expression were confirmed by immunoblotting and/or immunohistochemical analysis on the primary tissue specimens. Our studies demonstrate the utility of SELDI-TOF-MS for the rapid discovery of differentially expressed proteins using femtomolar quantities of crude protein derived from biopsy material. The versatility of this methodology supports its application to the rapid discovery of potential biomarkers in a variety of cellular systems.


Laboratory Investigation | 2003

Comparative Microarray Analysis of Gene Expression During Activation of Human Peripheral Blood T Cells and Leukemic Jurkat T Cells

Zhaosheng Lin; G. Chris Fillmore; Tae-Hyun Um; Kojo S.J. Elenitoba-Johnson; Megan S. Lim

Activation of T cells involves a complex cascade of signal transduction pathways linking T-cell receptor engagement at the cell membrane to the transcription of multiple genes within the nucleus. The T-cell leukemia–derived cell line Jurkat has generally been used as a model system for the activation of T cells. However, genome-wide comprehensive studies investigating the activation status, and thus the appropriateness, of this cell line for this purpose have not been performed. We sought to compare the transcriptional profiles of phenotypically purified human CD2+ T cells with those of Jurkat T cells during T-cell activation, using cDNA microarrays containing 6912 genes. About 300 genes were up-regulated by more than 2-fold during activation of both peripheral blood (PB) T cells and Jurkat T cells. The number of down-regulated genes was significantly lower than that of up-regulated genes. Only 79 genes in PB T cells and 37 genes in Jurkat T cells were down-regulated by more than 2-fold during activation. Comparison of gene expression during activation of Jurkat and PB T cells revealed a common set of genes that were up-regulated, such as Rho GTPase-activating protein 1, SKP2, CDC25A, T-cell specific transcription factor 7, cytoskeletal proteins, and signaling molecules. Genes that were commonly down-regulated in both PB T cells and Jurkat T cells included CDK inhibitors (p16, p19, p27), proapoptotic caspases, and the transcription factors c-fos and jun-B. After activation, 71 genes in PB T cells and only 3 genes in Jurkat T cells were up-regulated 4-fold or more. Of these up-regulated genes and expressed sequence tags, 44 were constitutively expressed at high levels in nonactivated Jurkat cells. Quantitative real-time RT-PCR analysis confirmed our microarray data. Our findings indicate that although there is significant overlap in the activation-associated transcriptional profiles in PB T cells compared with Jurkat T cells, there is a subset of genes showing differential expression patterns during the activation of the two cell types.


The Journal of Molecular Diagnostics | 2002

Fluorescence PCR quantification of cyclin D1 expression.

Kojo S.J. Elenitoba-Johnson; Sandra D. Bohling; Stephen D. Jenson; Zhaosheng Lin; Kimberly A. Monnin; Megan S. Lim

We have used a continuous fluorescence monitoring method to assess cyclin D1 mRNA expression in a variety of hematological and non-hematological processes. We examined 14 cell lines, 11 reactive lymphoid tissues, and 57 primary hematopoietic neoplasms including mantle cell lymphoma (MCL) (n = 10), chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL) (n = 11), acute lymphoblastic leukemia/lymphoma (n = 15), follicular lymphoma (n = 6), peripheral T-cell lymphoma (PTCL) (n = 3), anaplastic large cell lymphoma (n = 3), hairy cell leukemia (n = 3), Burkitt lymphoma (n = 1), Burkitt-like lymphoma (n = 4), and plasmacytoma (n = 1) for the expression of cyclin D1 mRNA using fluorescently labeled sequence-specific hybridization probes. Fluorescence (F) was plotted against cycle (C) number over 45 cycles. The log-linear portion of the F versus C graph identified a fractional cycle number for threshold fluorescence. A beta-globin mRNA transcript with equivalent amplification efficiency to that of cyclin D1 was used for assessment of RNA integrity and normalization. In general, the MCLs demonstrated substantially higher levels of cyclin D1 mRNA than the other lymphoproliferative processes. Moderately high levels of cyclin D1 mRNA were detected in one PTCL. On average, the CLL/SLL cases showed cyclin D1 mRNA levels two to three orders of magnitude lower than observed in the MCLs. Cell lines derived from non-hematopoietic neoplasms such as fibrosarcoma, small cell carcinoma, and neuroblastoma showed comparable or higher levels of cyclin D1 mRNA than the MCLs. Our results indicate that quantitative real-time reverse transcription (RT) polymerase chain reaction is a simple, rapid, and accurate technique for assessing cyclin D1 expression, and while it is not specific, it can reliably be used in the distinction of MCL from CLL/SLL.


FEBS Letters | 2002

Gene expression profiling of cell lines derived from T-cell malignancies.

G. Chris Fillmore; Zhaosheng Lin; Sandra D. Bohling; Ryan S. Robetorye; Chan Hwan Kim; Stephen D. Jenson; Kojo S.J. Elenitoba-Johnson; Megan S. Lim

The expression profiles of eight cell lines derived from T‐cell malignancies were compared to CD4‐positive T‐cells using cDNA microarray technology. Unsupervised hierarchical clustering of 4364 genes demonstrated substantial heterogeneity resulting in four distinct groups. While no genes were found to be uniformly up‐ or down‐regulated across all cell lines, we observed 111 over‐expressed genes (greater than two‐fold) and 1118 down‐regulated genes (greater than two‐fold) in the lymphomas as a group when compared to CD4‐positive T‐cells. These included genes involved in cytokine signaling, cell adhesion, cytoskeletal elements, nuclear transcription factors, and known oncogenes and tumor suppressor genes. Quantitative fluorescent reverse transcription‐polymerase chain reaction analysis demonstrated 70% concordance with the microarray results. While freshly isolated malignant cells may differ in their individual expression patterns relative to established cell lines from the same diagnoses, we feel that the variety of different lymphocytic cell lines that we examined provides a representative picture of the molecular pathogenesis of T‐cell malignancies.


British Journal of Haematology | 2003

Growth regulation by p27Kip1 is abrogated by multiple mechanisms in aggressive malignant lymphomas

Zhaosheng Lin; Steve Lim; Megan S. Lim

Summary. The cyclin‐dependent kinase inhibitor p27Kip1 is a key regulator of the G1/S transition, and an inverse relationship between p27Kip1 protein expression and proliferation index has been reported in malignant lymphomas. However, a subset of aggressive B‐cell lymphomas demonstrates high p27Kip1 expression despite a high proliferation index. The aim of this study was to determine potential mechanisms by which lymphoma cells abrogate the growth inhibitory effect of high p27Kip1. The effect of transforming growth factor‐β (TGF‐β) and serum stimulation on p27Kip1 expression and cyclin E/cdk2 activity was investigated in four lymphoma cell lines, Jurkat, CEM‐6, OCI‐Ly1 and Nalm‐6. Reactive lymphocytes responded to growth inhibitory TGF‐β by inducing p27Kip1 expression, with subsequent accumulation of cells in G0/G1. In contrast, TGF‐β did not alter the level of p27Kip1 in Jurkat, CEM‐6 and OCI‐Ly1 cells with no change in cyclin E/cdk2‐kinase activity. Serum stimulation also did not result in a significant change in p27Kip1 expression. Western blot analysis of subcellular fractions demonstrated cytoplasmic p27Kip1, corroborated by immunocytochemistry in a subset of the lymphoma cells. Sequestration of p27Kip1 by cyclin D3 was observed in the nuclear and cytoplasmic fractions of Nalm‐6, OCI‐Ly‐1 and NCEB cells. These results indicate that multiple mechanisms contribute to the abrogation of growth regulation by unscheduled high p27Kip1 protein expression including deficient response to TGF‐β and serum, sequestration by cyclin D3 and cytoplasmic displacement.

Collaboration


Dive into the Zhaosheng Lin's collaboration.

Top Co-Authors

Avatar

Megan S. Lim

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steve Lim

University of Toronto

View shared research outputs
Researchain Logo
Decentralizing Knowledge