Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhaoshi Bao is active.

Publication


Featured researches published by Zhaoshi Bao.


Neuro-oncology | 2013

HOTAIR, a cell cycle-associated long noncoding RNA and a strong predictor of survival, is preferentially expressed in classical and mesenchymal glioma.

Junxia Zhang; Lei Han; Zhaoshi Bao; Yingyi Wang; Luyue Chen; Wei Yan; Shizhu Yu; Peiyu Pu; Ning Liu; Yongping You; Tao Jiang; Chunsheng Kang

BACKGROUND Long noncoding RNA Hox transcript antisense intergenic RNA (HOTAIR) has been characterized as a negative prognostic factor in breast and colon cancer patients. The clinical significance and function of HOTAIR in glioma remains unclear. METHODS We analyzed the clinical significance of HOTAIR in 3 different glioma cohorts with gene expression data, including correlation with tumor grade, prognosis, and molecular subtype. The function of HOTAIR in glioma was explored by performing gene set enrichment analysis and in vitro and in vivo experiments. RESULTS HOTAIR expression was closely associated with glioma grade and poor prognosis. Multivariate Cox regression analysis revealed that HOTAIR was an independent prognostic factor in glioblastoma multiforme patients. HOTAIR expression correlated with glioma molecular subtype, including those of The Cancer Genome Atlas. HOTAIR was preferentially expressed in the classical and mesenchymal subtypes compared with the neural and proneural subtypes. A gene set enrichment analysis designed to show gene set differences between patients with high and low HOTAIR expression indicated that HOTAIR expression was associated with gene sets involved in cell cycle progression. HOTAIR reduction induced colony formation suppression, cell cycle G0/G1 arrest, and orthotopic tumor growth inhibition. CONCLUSION Our data establish that HOTAIR is an important long noncoding RNA that primarily serves as a prognostic factor for glioma patient survival, as well as a biomarker for identifying glioma molecular subtypes, a critical regulator of cell cycle progression.


PLOS ONE | 2012

Correlation of IDH1 Mutation with Clinicopathologic Factors and Prognosis in Primary Glioblastoma: A Report of 118 Patients from China

Wei Yan; Wei Zhang; Gan You; Zhaoshi Bao; Yongzhi Wang; Yanwei Liu; Chunsheng Kang; Yongping You; Lei Wang; Tao Jiang

It has been reported that IDH1 (IDH1R132) mutation was a frequent genomic alteration in grade II and grade III glial tumors but rare in primary glioblastoma (pGBM). To elucidate the frequency of IDH1 mutation and its clinical significance in Chinese patients with pGBM, one hundred eighteen pGBMs were assessed by pyro-sequencing for IDH1 mutation status, and the results were correlated with clinical characteristics and molecular pathological factors. IDH1 mutations were detected in 19/118 pGBM cases (16.1%). Younger age, methylated MGMT promoter, high expression of mutant P53 protein, low expression of Ki-67 or EGFR protein were significantly correlated with IDH1 mutation status. Most notably, we identified pGBM cases with IDH1 mutation were mainly involved in the frontal lobe when compared with those with wild-type IDH1. In addition, Kaplan-Meier survival analysis revealed a highly significant association between IDH1 mutation and a better clinical outcome (p = 0.026 for progression-free survival; p = 0.029 for overall survival). However, in our further multivariable regression analysis, the independent prognostic effect of IDH1 mutation is limited when considering age, preoperative KPS score, extent of resection, TMZ chemotherapy, and Ki-67 protein expression levels, which might narrow its prognostic power in Chinese population in the future.


Neuro-oncology | 2012

Molecular classification of gliomas based on whole genome gene expression: a systematic report of 225 samples from the Chinese Glioma Cooperative Group

Wei Yan; Wei Zhang; Gan You; Junxia Zhang; Lei Han; Zhaoshi Bao; Yongzhi Wang; Yanwei Liu; Chuanlu Jiang; Chunsheng Kang; Yongping You; Tao Jiang

Defining glioma subtypes based on objective genetic and molecular signatures may allow for a more rational, patient-specific approach to molecularly targeted therapy. However, prior studies attempting to classify glioma subtypes have given conflicting results. We aim to complement and validate the existing molecular classification system on a large number of samples from an East Asian population. A total of 225 samples from Chinese patients was selected for whole genome gene expression profiling. Consensus clustering was applied. Three major groups of gliomas were identified (referred to as G1, G2, and G3). The G1 subgroup correlates with a good clinical outcome, young age, and extremely high frequency of IDH1 mutations. Relative to the G1 subgroup, the G3 subgroup is correlated with a poorer clinical outcome, older age, and a very low rate of mutations in the IDH1 gene. Correlations of the G2 subgroup with respect to clinical outcome, age, and IDH1 mutation fall between the G1 and G3 subgroups. In addition, the G2 subtype was associated with a higher percentage of loss of 1p/19q when compared with G1 and G3 subtypes. Furthermore, our classification scheme was validated on 2 independent datasets derived from the cancer genome atlas (TCGA) and Rembrandt. With use of the TCGA classification system, proneural, neural, and mesenchymal, but not classical subtype, associated gene signatures were clearly defined. In summary, our results reveal that 3 main subtypes stably exist in Chinese patients with glioma. Our classification scheme may reflect the clinical and genetic alterations more clearly. Classical subtype-associated gene signature was not found in our dataset.


Oncology Reports | 2012

MiR-218 reverses high invasiveness of glioblastoma cells by targeting the oncogenic transcription factor LEF1

Yanwei Liu; Wei Yan; Wei Zhang; Lingchao Chen; Gan You; Zhaoshi Bao; Yongzhi Wang; Hongjun Wang; Chunsheng Kang; Tao Jiang

The invasive behavior of glioblastoma multiforme (GBM) cells is one of the most important reasons for the poor prognosis of this cancer. For invasion, tumor cells must acquire an ability to digest the extracellular matrix and infiltrate the normal tissue bordering the tumor. Preventing this by altering effector molecules can significantly improve a patients prognosis. Accumulating evidence suggests that miRNAs are involved in multiple biological functions, including cell invasion, by altering the expression of multiple target genes. The expression levels of miR-218 correlate with the invasive potential of GBM cells. In this study, we found that miR-218 expression was low in glioma tissues, especially in GBM. The data showed an inverse correlation in 60 GBM tissues between the levels of miR-218 and MMP mRNAs (MMP-2, -7 and -9). Additionally, ectopic expression of miR-218 suppressed the invasion of GBM cells whereas inhibition of miR-218 expression enhanced the invasive ability. Numerous members of the MMP family are downstream effectors of the Wnt/LEF1 pathway. Target prediction databases and luciferase data showed that LEF1 is a new direct target of miR-218. Importantly, western blot assays demonstrated that miR-218 can reduce protein levels of LEF1 and MMP-9. We, therefore, hypothesize that miR-218 directly targets LEF1, resulting in reduced synthesis of MMP-9. Results suggest that miR-218 is involved in the invasive behavior of GBM cells and by targeting LEF1 and blocking the invasive axis, miR-218-LEF1-MMPs, it may be useful for developing potential clinical strategies.


Neuro-oncology | 2012

Glioblastoma with an oligodendroglioma component: distinct clinical behavior, genetic alterations, and outcome

Yongzhi Wang; Shouwei Li; Lingchao Chen; Gan You; Zhaoshi Bao; Wei Yan; Zhendong Shi; Yin Chen; Kun Yao; Wei Zhang; Chunsheng Kang; Tao Jiang

Glioblastomas (GBMs) containing foci that resemble oligodendroglioma are defined as GBM with oligodendroglioma component (GBMO). However, whether GBMO is a distinct clinicopathological variant of GBM or merely represents a divergent pattern of differentiation remains controversial. We investigated 219 consecutive primary GBMs, of which 40 (18.3%) were confirmed as GBMOs. The clinical features and genetic profiles of the GBMOs were analyzed and compared with the conventional GBMs. The GBMO group showed more frequent tumor-related seizures (P= .027), higher frequency of IDH1 mutation (31% vs. <5%, P= .015), lower MGMT expression (P= .016), and longer survival (19.0 vs. 13.2 months; P= .022). In multivariate Cox regression analyses, presence of an oligodendroglioma component was predictive of longer survival (P= .001), but the extent of the oligodendroglial component appeared not to be linked to prognosis (P= .664). The codeletions of 1p/19q, somewhat surprisingly, were infrequent (<5%) in both GBMO and conventional GBM. In addition, the response to aggressive therapy differed: the GBMO group had no survival advantage associated with aggressive treatment protocols, whereas a clear treatment effect was observed in the conventional GBM group. Collectively, the clinical behavior and genetic alterations of GBMO thus differs from those of conventional GBM. Presence of an oligodendroglial component may therefore be a useful classification and stratification variable in therapeutic trials of GBMs.


Cancer | 2013

Whole-genome microRNA expression profiling identifies a 5-microRNA signature as a prognostic biomarker in Chinese patients with primary glioblastoma multiforme

Wei Zhang; Jing Zhang; Wei Yan; Gan You; Zhaoshi Bao; Shouwei Li; Chunsheng Kang; Chuanlu Jiang; Yongping You; Yuxiang Zhang; Clark C. Chen; Sonya Wei Song; Tao Jiang

More reliable clinical outcome prediction is required to better guide more personalized treatment for patients with primary glioblastoma multiforme (GBM). The objective of this study was to identify a microRNA expression signature to improve outcome prediction for patients with primary GBM.


Cancer Letters | 2016

CGCG clinical practice guidelines for the management of adult diffuse gliomas

Tao Jiang; Ying Mao; Wenbin Ma; Qing Mao; Yongping You; Xuejun Yang; Chuanlu Jiang; Chunsheng Kang; Xuejun Li; Ling Chen; Xiaoguang Qiu; Weimin Wang; Wenbin Li; Yu Yao; Shaowu Li; Shouwei Li; Anhua Wu; Ke Sai; Hongmin Bai; Guilin Li; Baoshi Chen; Kun Yao; Xinting Wei; Xianzhi Liu; Zhiwen Zhang; Yiwu Dai; Sheng-Qing Lv; Liang Wang; Zhixiong Lin; Jun Dong

The Chinese Glioma Cooperative Group (CGCG) Guideline Panel for adult diffuse gliomas provided recommendations for diagnostic and therapeutic procedures. The Panel covered all fields of expertise in neuro-oncology, i.e. neurosurgeons, neurologists, neuropathologists, neuroradiologists, radiation and medical oncologists and clinical trial experts. The task made clearer and more transparent choices about outcomes considered most relevant through searching the references considered most relevant and evaluating their value. The scientific evidence of papers collected from the literature was evaluated and graded based on the Oxford Centre for Evidence-based Medicine Levels of Evidence and recommendations were given accordingly. The recommendations will provide a framework and assurance for the strategy of diagnostic and therapeutic measures to reduce complications from unnecessary treatment and cost. The guideline should serve as an application for all professionals involved in the management of patients with adult diffuse glioma and also as a source of knowledge for insurance companies and other institutions involved in the cost regulation of cancer care in China.


Cancer Letters | 2013

Genome-wide DNA methylation profiling identifies ALDH1A3 promoter methylation as a prognostic predictor in G-CIMP− primary glioblastoma

Wei Zhang; Wei Yan; Gan You; Zhaoshi Bao; Yongzhi Wang; Yanwei Liu; Yongping You; Tao Jiang

To date, the aberrations in the DNA methylation patterns that are associated with different prognoses of G-CIMP- primary GBMs remain to be elucidated. Here, DNA methylation profiling of primary GBM tissues from 13 long-term survivors (LTS; overall survival ⩾18months) and 20 short-term survivors (STS; overall survival ⩽9months) was performed. Then G-CIMP+ samples were excluded. The differentially expressed CpG loci were identified between residual 18 STS and 9 LTS G-CIMP- samples. Methylation levels of 11 CpG loci (10genes) were statistically significantly lower, and 43 CpG loci (40genes) were statistically significantly higher in the tumor tissues of LTS than those of STS G-CIMP- samples (P<0.01). Of the 43 CpG loci that were hypermethylated in LTS G-CIMP- samples, 3 CpG loci localized in the promoter of ALDH1A3. Furthermore, using an independent validation cohort containing 37 primary GBM samples without IDH1 mutation and MGMT promoter methylation, the hypermethylation status of ALDH1A3 promoter predicted a better prognosis with an accompanied low expression of ALDH1A3 protein. Taken together, our results defined prognosis-related methylation signatures systematically for the first time in G-CIMP- primary GBMs. ALDH1A3 promoter methylation conferred a favorable prognosis in G-CIMP- primary GBMs.


Proceedings of the National Academy of Sciences of the United States of America | 2014

A glioma classification scheme based on coexpression modules of EGFR and PDGFRA

Yingyu Sun; Wei Zhang; Dongfeng Chen; Yuhong Lv; Junxiong Zheng; Henrik Lilljebjörn; Liang Ran; Zhaoshi Bao; Charlotte Soneson; Hans Olov Sjögren; Leif G. Salford; Jianguang Ji; Pim J. French; Thoas Fioretos; Tao Jiang; Xiaolong Fan

Significance Classification of cancer provides crucial guidance for clinical treatment and mechanistic studies. Our work extends previous glioma classification studies in that we established EGFR module (EM)/PDGFRA module (PM) glioma classification scheme based on gene coexpression modules around key signaling pathways conserved in neural development and gliomagenesis. We identified coexpressed EM and PM genes as classifiers. Based on the EM and PM signatures, our classification scheme robustly assigns adult low-grade and high-grade diffuse gliomas into three major subtypes that are distinct in patient survival, and in transcriptomic and genomic patterns. Our work suggests that EM and PM genes may play currently unrecognized roles in gliomagenesis. EM/PM glioma classification scheme forms a framework toward establishing molecular diagnostic tools and identifying new therapeutic targets to combat gliomas. We hypothesized that key signaling pathways of glioma genesis might enable the molecular classification of gliomas. Gene coexpression modules around epidermal growth factor receptor (EGFR) (EM, 29 genes) or platelet derived growth factor receptor A (PDGFRA) (PM, 40 genes) in gliomas were identified. Based on EM and PM expression signatures, nonnegative matrix factorization reproducibly clustered 1,369 adult diffuse gliomas WHO grades II-IV from four independent databases generated in three continents, into the subtypes (EM, PM and EMlowPMlow gliomas) in a morphology-independent manner. Besides their distinct patterns of genomic alterations, EM gliomas were associated with higher age at diagnosis, poorer prognosis, and stronger expression of neural stem cell and astrogenesis genes. Both PM and EMlowPMlow gliomas were associated with younger age at diagnosis and better prognosis. PM gliomas were enriched in the expression of oligodendrogenesis genes, whereas EMlowPMlow gliomas were enriched in the signatures of mature neurons and oligodendrocytes. The EM/PM-based molecular classification scheme is applicable to adult low-grade and high-grade diffuse gliomas, and outperforms existing classification schemes in assigning diffuse gliomas to subtypes with distinct transcriptomic and genomic profiles. The majority of the EM/PM classifiers, including regulators of glial fate decisions, have not been extensively studied in glioma biology. Subsets of these classifiers were coexpressed in mouse glial precursor cells, and frequently amplified or lost in an EM/PM glioma subtype-specific manner, resulting in somatic copy number alteration-dependent gene expression that contributes to EM/PM signatures in glioma samples. EM/PM-based molecular classification provides a molecular diagnostic framework to expedite the search for new glioma therapeutic targets.


Journal of Cancer Research and Clinical Oncology | 2014

Correlation of IDH1/2 mutation with clinicopathologic factors and prognosis in anaplastic gliomas: a report of 203 patients from China

Chuanbao Zhang; Zhaoshi Bao; Hongjun Wang; Wei Yan; Yanwei Liu; Mingyang Li; Wei Zhang; Ling Chen; Tao Jiang

PurposeIsocitrate dehydrogenase (IDH) gene mutation is one of the most exciting new advances in these years. It has been reported that IDH gene frequently altered in grade II and grade III gliomas. We aimed to identify the mutation frequency of IDH genes in Chinese anaplastic glioma patients, the association of IDH gene mutation with other clinical and molecular pathological features and the prognostic value of it.MethodsWe performed polymerase chain reaction-based IDH gene mutation detection in 203 anaplastic glioma patients from China.ResultsA total of 108 and 3 patients harbored IDH1 and IDH2 gene mutation, respectively. And there was a higher proportion of MGMT promoter methylation, frontal lobe location, and better outcome and lower proportion of temporal location in IDH-mutated samples. There were hardly any significant association between protein expression level of well-known markers and IDH mutation. Anaplastic oligoastrocytoma and anaplastic astrocytoma patients with IDH gene mutation showed similar prognosis with anaplastic oligodendroglioma patients with wild-type IDH gene.ConclusionsIDH gene mutation is a good prognostic marker and a potential substratification factor for anaplastic glioma patients.

Collaboration


Dive into the Zhaoshi Bao's collaboration.

Top Co-Authors

Avatar

Tao Jiang

Capital Medical University

View shared research outputs
Top Co-Authors

Avatar

Wei Zhang

Capital Medical University

View shared research outputs
Top Co-Authors

Avatar

Chuanbao Zhang

Capital Medical University

View shared research outputs
Top Co-Authors

Avatar

Wei Yan

University of California

View shared research outputs
Top Co-Authors

Avatar

Gan You

Capital Medical University

View shared research outputs
Top Co-Authors

Avatar

Yanwei Liu

Capital Medical University

View shared research outputs
Top Co-Authors

Avatar

Chunsheng Kang

Tianjin Medical University General Hospital

View shared research outputs
Top Co-Authors

Avatar

Pei Yang

Capital Medical University

View shared research outputs
Top Co-Authors

Avatar

Hongjun Wang

Harbin Medical University

View shared research outputs
Top Co-Authors

Avatar

Zheng Wang

Capital Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge