Zhaotang Ding
Qingdao Agricultural University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zhaotang Ding.
Plant Physiology and Biochemistry | 2016
Qingshan Xu; Yu Wang; Zhaotang Ding; Lubin Song; Yusheng Li; Dexin Ma; Yi Wang; Jiazhi Shen; Sisi Jia; Haiwei Sun; Hong Zhang
Tea [Camellia sinensis (L.)], is an aluminum (Al(3+)) hyperaccumulator plant and grows well in acid soils. In the present study, roots of two tea cultivars, JHC and YS were treated with different concentrations of Al(3+). After treatments, the root length, dry matter, root activity and chlorophyll content (SPAD value) of JHC had greater increase than that of YS. We also detected metabolic changes of two varieties using GC-MS method. Comparison between two cultivars indicated that shikimic pathway was more enhanced in YS roots by Al(3+) with higher levels of catechine, quinic acid and shikimic acid. While, more active amino acid synthesis was found in JHC roots and JHC leaves remained the higher level contents of metabolites related to cysteine synthesis. The comparison also showed that a large amount of sugar alcohols were accumulated in roots of two varieties, whereas most of them were reduced in YS leaves. Other well-known ligands, such as phosphoric acid and malic acid were observed in two cultivars that showed significantly altered abundances under Al(3+) treatments. The results indicated that Al(3+) adaptation of two cultivars may be correlated with their differential metabolism of amino acids, sugars and shikimic acids.
Journal of Theoretical Biology | 2013
Lulu Pan; Yu Wang; Jianhui Hu; Zhaotang Ding; Chen Li
The stearoyl-acyl carrier protein desaturase (SAD) gene widely exists in all kinds of plants. In this paper, the Camellia sinensis SAD gene (CsSAD) sequence was firstly analyzed by Codon W, CHIPS, and CUSP programs online, and then compared with genomes of the tea plant, other species and SAD genes from 11 plant species. The results show that the CsSAD gene and the selected 73 of C. sinensis genes have similar codon usage bias. The CsSAD gene has a bias toward the synonymous codons with A and T at the third codon position, the same as the 73 of C. sinensis genes. Compared with monocotyledons such as Triticum aestivum and Zea mays, the differences in codon usage frequency between the CsSAD gene and dicotyledons such as Arabidopsis thaliana and Nicotiana tobacum are less. Therefore, A. thaliana and N. tobacum expression systems may be more suitable for the expression of the CsSAD gene. The analysis result of SAD genes from 12 plant species also shows that most of the SAD genes are biased toward the synonymous codons with G and C at the third codon position. We believe that the codon usage bias analysis presented in this study will be essential for providing a theoretical basis for discussing the structure and function of the CsSAD gene.
Plant Physiology and Biochemistry | 2017
Yinfei Zhang; Yu Wang; Zhaotang Ding; Hui Wang; Lubin Song; Sisi Jia; Dexin Ma
The research of physiological responses to Zn stress in plants has been extensively studied. However, the ionomics and metabolomics responses of plants to Zn stress remain largely unknown. In present study, the nutrient elements were identified involved in ion homeostasis and metabolomics changes related to Zn deficiency or excess in tea plants. Nutrient element analysis demonstrated that the concentrations of Zn affected the ion-uptake in roots and the nutrient element transportation to leaves, leading to the different distribution of P, S, Al, Ca, Fe and Cu in the tea leaves or roots. Metabolomics analysis revealed that Zn deficiency or excess differentially influenced the metabolic pathways in the tea leaves. More specifically, Zn deficiency affected the metabolism of carbohydrates, and Zn excess affected flavonoids metabolism. Additionally, the results showed that both Zn deficiency and Zn excess led to reduced nicotinamide levels, which speeded up NAD+ degradation and thus reduced energy metabolism. Furthermore, element-metabolite correlation analysis illustrated that Zn contents in the tea leaves were positively correlated with organic acids, nitrogenous metabolites and some carbohydrate metabolites, and negatively correlated with the metabolites involved in secondary metabolism and some other carbohydrate metabolites. Meanwhile, metabolite-metabolite correlation analysis demonstrated that organic acids, sugars, amino acids and flavonoids played dominant roles in the regulation of the tea leaf metabolism under Zn stress. Therefore, the conclusion should be drawn that the tea plants responded to Zn stress by coordinating ion-uptake and regulation of metabolism of carbohydrates, nitrogenous metabolites, and flavonoids.
Plant Physiology and Biochemistry | 2017
Qingshan Xu; Yu Wang; Zhaotang Ding; Kai Fan; Dexin Ma; Yongliang Zhang; Qi Yin
Tea (Camellia sinensis (L.) O. Kuntze), is an aluminum (Al) hyperaccumulator and grows well in acid soils. Although Al-induced growth of tea plant has been studied, the proteomic profiles of tea plants in response to Al are unclear. In the present study, the proteomic profiles in tea roots and leaves under Al stress were investigated using iTRAQ proteomics approach. In total, 755 and 1059 differentially expressed proteins were identified in tea roots and leaves, respectively. KEGG enrichment analysis showed that the differentially expressed proteins in roots were mainly involved in 11 pathways whereas those from leaves were mainly involved in 9 pathways. Abundance of most protein functions in glycolytic metabolism were enhanced in tea roots, and proteins involved in photosynthesis were stimulated in tea leaves. The protein ferulate-5-hydroxylase (F5H) in lignin biosynthetic pathway was down-regulated in both roots and leaves. Furthermore, antioxidant enzymes (ascorbate peroxidase, catalase and glutathione S-transferase) and citrate synthesis were accumulated in tea roots in response to Al. The results indicated that active photosynthesis and glycolysis as well as increased activities of antioxidant enzymes can be considered as a possible reason for the stimulatory effects of Al on the growth of tea plants. Additionally, the down-regulation of F5H and the binding of Al and phenolic acids may reduce the accumulation of lignin.
Plant Physiology and Biochemistry | 2016
Sisi Jia; Yu Wang; Jianhui Hu; Zhaotang Ding; Qing Liang; Yinfei Zhang; Hui Wang
Tea [Camellia sinensis (L.) O. Kuntze] is one of the most popular non-alcoholic beverage crops in the world, and the physiological processes and gene regulations involved in development in tea plants have been well characterized. However, relatively little is known about the metabolic changes combined with mineral distributions that occur during flower development. Here we detected the contents of 11 elements in tea leaves and flowers and found that, some of them, especially phosphorus, sulfur and copper, showed significant changes during tea flowering. We also detected 122 metabolites in tea leaves and flowers and found that, 72 of them showed significant differences between flowers and leaves, of which sugars, organic acids, and flavonoids dominated. The sugars, such as trehalose and galactose, all accumulated in tea flowers, and the organic acids, such as malic acid, citric acid and fumaric acid involved in TCA cycle. The flavonoids, like epicatechin, catechin gallate and epigallocatechin, were more abundant in leaves. Furthermore, we found that the contents of 33 metabolites changed during the development of flowers. Especially, citric acid, phenylalanine and most flavonoids decreased while fructose and galactose increased during flowering stages in flowers. We also analyzed the correlations between the ions and metabolites and found that, some mineral nutrients including phosphorus, sulfur, manganese and zinc had close relations to organic acids, flavonoids, sugars and several amino acids during flowering. We mapped the metabolic pathway according to the KEGG database. This work will serve as the foundation for a systems biology approach to the understanding of mineral metabolism.
Frontiers in Plant Science | 2016
Chao Zheng; Yu Wang; Zhaotang Ding; Lei Zhao
In field conditions, especially in arid and semi-arid areas, tea plants are often simultaneously exposed to various abiotic stresses such as cold and drought, which have profound effects on leaf senescence process and tea quality. However, most studies of gene expression in stress responses focus on a single inciting agent, and the confounding effect of multiple stresses on crop quality and leaf senescence remain unearthed. Here, global transcriptome profiles of tea leaves under separately cold and drought stress were compared with their combination using RNA-Seq technology. This revealed that tea plants shared a large overlap in unigenes displayed “similar” (26%) expression pattern and avoid antagonistic responses (lowest level of “prioritized” mode: 0%) to exhibit very congruent responses to co-occurring cold and drought stress; 31.5% differential expressed genes and 38% of the transcriptome changes in response to combined stresses were unpredictable from cold or drought single-case studies. We also identified 319 candidate genes for enhancing plant resistance to combined stress. We then investigated the combined effect of cold and drought on tea quality and leaf senescence. Our results showed that drought-induced leaf senescence were severely delayed by (i) modulation of a number of senescence-associated genes and cold responsive genes, (ii) enhancement of antioxidant capacity, (iii) attenuation of lipid degradation, (iv) maintenance of cell wall and photosynthetic system, (v) alteration of senescence-induced sugar effect/sensitivity, as well as (vi) regulation of secondary metabolism pathways that significantly influence the quality of tea during combined stress. Therefore, care should be taken when utilizing a set of stresses to try and maximize leaf longevity and tea quality.
Acta Physiologiae Plantarum | 2014
Qing-Ping Ma; En You; Jing Wang; Yu Wang; Zhaotang Ding
The plastidial ω-3 fatty acid desaturase catalyses the production of trienoic fatty acids (TAs) in plant chloroplasts and plays an important role in plant responses to environmental stress. In this study, the full-length cDNAs encoding two plastidial ω-3 desaturases, designated CsFAD7 and CsFAD8 (GenBank Accession No. JX943516 and KC847167, respectively), were isolated from the tea plant (Camellia sinensis L.) using RT-PCR and RACE. Codon usage analysis revealed that U- and A-ended codons were preferentially used in these two genes. Sequence analysis showed that the deduced amino acid sequences of CsFAD7 and CsFAD8 had high homology to plastidial ω-3 desaturases from other plant species. Expression analysis by real-time PCR revealed that both genes are tissue-specific and expressed the highest levels in shoots. Meanwhile, CsFAD7 and CsFAD8 responded to various abiotic stresses and hormones, but in very different manners. Taken together, these results suggest that CsFAD7 and CsFAD8 are both responsive to abiotic stress signals; however, they may play very different roles during stress tolerance in tea plants.
Gene | 2017
Feng Liu; Yu Wang; Zhaotang Ding; Lei Zhao; Jun Xiao; Linjun Wang; Shibo Ding
Flowering is a critical and complicated process in plant development, involving interactions of numerous endogenous and environmental factors, but little is known about the complex network regulating flower development in tea plants. In this study, de novo transcriptome assembly and gene expression analysis using Illumina sequencing technology were performed. Transcriptomic analysis assembles gene-related information involved in reproductive growth of C. sinensis. Gene Ontology (GO) analysis of the annotated unigenes revealed that the majority of sequenced genes were associated with metabolic and cellular processes, cell and cell parts, catalytic activity and binding. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that metabolic pathways, biosynthesis of secondary metabolites, and plant hormone signal transduction were enriched among the DEGs. Furthermore, 207 flowering-associated unigenes were identified from our database. Some transcription factors, such as WRKY, ERF, bHLH, MYB and MADS-box were shown to be up-regulated in floral transition, which might play the role of progression of flowering. Furthermore, 14 genes were selected for confirmation of expression levels using quantitative real-time PCR (qRT-PCR). The comprehensive transcriptomic analysis presents fundamental information on the genes and pathways which are involved in flower development in C. sinensis. Our data also provided a useful database for further research of tea and other species of plants.
Journal of Horticultural Science & Biotechnology | 2016
Zhaotang Ding; Qing-Ping Ma; Yu Wang
ABSTRACT In this study, two tea varieties (Camellia sinensis cv. CsCr02 and CsCr03) were studied under natural cold conditions to investigate the differences of thylakoid membrane structure, fatty acid desaturase (FAD) genes, and fatty acid (FA) composition in response to low temperatures. Quantitative real-time polymerase chain reaction assay confirmed that the expression of CsFAD8 in leaves of the two tea varieties was much higher than that of CsFAD7. The expression of both genes in CsCr03 was higher than in CsCr02. Electron microscopy showed that the damage to the thylakoid membrane in CsCr03 was less severe than in CsCr02 during the decrease of natural temperature. Changes in thylakoid membrane integrity coincided with the gradual decline in chlorophyll concentration and chlorosis of the tea leaves. With the decrease of natural temperature, a decline in the trienoic FA species (16:3 and 18:3) and an increase in the dienoic species (18:2) were observed in the two varieties. These results indicate that CsCr03 has higher cold adaptability compared to CsCr02.
Plant Physiology and Biochemistry | 2017
Zhaotang Ding; Sisi Jia; Yu Wang; Jun Xiao; Yinfei Zhang
In order to study the response of tea plants to P stress, we conducted the ionomic and metabolomic analysis by ICP-OES, GC-MS and LC-MS. The results demonstrated that P was antagonistic with S, and was cooperative with Cu, Zn, Mn and Fe under P-deficiency. However, P was antagonistic with Mn, Fe and S, and was cooperative with Cu and Zn under P-excess. Moreover, P-deficiency or excess reduced the syntheses of flavonoids and phosphorylated metabolites. P-deficiency decreased the amount of glutamate and increased the content of glutamine, while P-excess decreased the content of glutamine. Besides, P-deficiency increased three organic acids and decreased three organic acids. P-excess increased the contents of malic acid, oxalic acid, ribonic acid and etc. involved in primary metabolism, but decreased the contents of p-coumaric acid, indoleacrylic acid, related to secondary metabolism. Furthermore, the contents of Mn and Zn were found to be positively related to the amounts of myricetin and quercetin, and the content of Mn to be positively related to the amount of arabinose. The results implied that the P stresses severely disturbed the metabolism of minerals and metabolites in tea plants, which influenced the yield and quality of tea.