Zhaoyang Duan
Xi'an Jiaotong University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zhaoyang Duan.
Life Sciences | 2015
Jiamei Lu; Jianhua Shi; Manxiang Li; Baosong Gui; Rongguo Fu; Ganglian Yao; Zhaoyang Duan; Zhian Lv; Yanyan Yang; Zhao Chen; Lining Jia; Lifang Tian
AIMS To clarify whether activation of adenosine monophosphate-activated protein kinase (AMPK) by metformin inhibits transforming growth factor beta (TGF-β)-induced collagen production in primary cultured mouse renal fibroblasts and further to address the molecular mechanisms. MAIN METHODS Primary cultured mouse renal fibroblasts were stimulated with TGF-β1 and the sequence specific siRNA of Smad3 or connective tissue growth factor (CTGF) was applied to investigate the involvement of these molecular mediators in TGF-β1-induced collagen type I production. Cells were pre-incubated with AMPK agonist metformin or co-incubated with AMPK agonist metformin and AMPK inhibitor Compound C before TGF-β1 stimulation to clarify whether activation of AMPK inhibition of TGF-β1-induced renal fibroblast collagen type I expression. KEY FINDINGS Our results demonstrate that TGF-β1 time- and dose-dependently induced renal fibroblast collagen type I production; TGF-β1 also stimulated Smad3-dependent CTGF expression and caused collagen type I generation; this effect was blocked by knockdown of Smad3 or CTGF. Activation of AMPK by metformin reduced TGF-β1-induced collagen type I production by suppression of Smad3-driven CTGF expression. SIGNIFICANCE This study suggests that activation of AMPK might be a novel strategy for the treatment of chronic kidney disease (CKD) partially by inhibition of renal interstitial fibrosis (RIF).
Pathology Research and Practice | 2016
Liqun Ma; Rongguo Fu; Zhaoyang Duan; Jiamei Lu; Jie Gao; Lifang Tian; Zhian Lv; Zhao Chen; Jin Han; Lining Jia; Li Wang
Type 2 diabetic nephropathy (DN) is a serious end-stage kidney disease worldwide. Multiple studies demonstrate that resveratrol (RSV) has a beneficial effect on DN. However, whether RSV-induced improvement in kidney function in diabetes is due to the regulation of autophagy remains unclear. Here, we investigated the mechanisms underlying RSV-mediated protection against DN in diabetic rats, with a special focus on the role of NAD-dependent deacetylase sirtuin 1 (Sirt1) in regulating autophagy. We found that long-term RSV treatment in rats promoted Sirt1 expression and improved related metabolic levels in the diabetic kidney. Our study showed that, in cultured NRK-52E cells, Sirt1 knockdown inhibited the autophagy levels of proteins Atg7, Atg5, and LC3 and impaired the RSV amelioration of dysfunctional autophagy under hypoxic condition. Furthermore, exposed to 1% O2 over time induced autophagy dysfunction and apoptosis in NRK-52E cells, which could be improved by RSV treatment. Our data highlight the role of the Sirt1-mediated pathway in the effects of RSV on autophagy in vivo and in vitro, suggesting RSV could be a potential new therapy for type 2 DN.
PLOS ONE | 2015
Lining Jia; Xiaotao Ma; Baosong Gui; Heng Ge; Li Wang; Yan Ou; Lifang Tian; Zhao Chen; Zhaoyang Duan; Jin Han; Rongguo Fu
Objective This study was to investigate whether sorafenib can inhibit the progression of renal fibrosis and to study the possible mechanisms of this effect. Methods Eight-week-old rats were subjected to unilateral ureteral obstruction (UUO) and were intragastrically administered sorafenib, while control and sham groups were administered vehicle for 14 or 21 days. NRK-52E cells were treated with TGF-β1 and sorafenib for 24 or 48 hours. HE and Masson staining were used to visualize fibrosis of the renal tissue in each group. The expression of α-SMA and E-cadherin in kidney tissue and NRK-52E cells were performed using immunohistochemistry and immunofluorescence. The apoptosis rate of NRK-52E cells was determined by flow cytometry analysis. The protein levels of Smad3 and p-Smad3 in kidney tissue and NRK-52E cells were detected by western blot analysis. Results HE staining demonstrated that kidney interstitial fibrosis, tubular atrophy, and inflammatory cell infiltration in the sorafenib-treated-UUO groups were significantly decreased compared with the vehicle-treated-UUO group (p<0.05). Masson staining showed that the area of fibrosis was significantly decreased in the sorafenib-treated-UUO groups compared with vehicle-treated-UUO group (p<0.01). The size of the kidney did not significantly increase; the cortex of the kidney was thicker and had a richer blood supply in the middle-dose sorafenib group compared with the vehicle-treated-UUO group (p<0.05). Compared with the vehicle-treated-UUO and TGF-β-stimulated NRK-52E groups, the expression of a-SMA and E-cadherin decreased and increased, respectively, in the UUO kidneys and NRK-52E cells of the sorafenib-treated groups (p<0.05). The apoptotic rate of NRK-52E cells treated with sorafenib decreased for 24 hours in a dose-dependent manner (p<0.05). Compared with the vehicle-treated UUO and TGF-β-stimulated NRK-52E groups, the ratio of p-Smad3 to Smad3 decreased in the sorafenib-treated groups (p<0.05). Conclusion Our results suggest that sorafenib may useful for the treatment of renal fibrosis through the suppression of TGF-β/Smad3-induced EMT signaling.
American Journal of Nephrology | 2015
Yan Ou; Wenqian Hou; Shuiqin Li; Xiaojing Zhu; Yan Lin; Jin Han; Zhaoyang Duan; Baosong Gui
Background/Aims: Endoplasmic reticulum stress (ERS) is an important self-protective cellular response to harmful stimuli that contribute to various diseases, including chronic renal failure (CRF). Sodium citrate plays an important role in antioxidant and cellular immunity, but whether it improves ERS in CRF is unclear. Methods: The rats were randomly divided into five groups: the control group, the sodium citrate control group, the model group, model rats with low dose sodium citrate (216 mg/kg), and model rats with a high dose of sodium citrate (746 mg/kg). The rats were euthanized at 6, 8, 12, and 16 weeks with their blood and renal tissue in detection. Results: The increased concentrations of blood urea nitrogen and serum creatinine in the model group were significantly decreased by sodium citrate treatment. Hematoxylin-eosin and Masson staining showed that sodium citrate treatment apparently improved renal pathological changes in CRF rats. Western blot analysis showed that sodium citrate treatment decreased the protein levels of transforming growth factor-beta 1 and collagen type IV, which were increased in model rats. Moreover, immunohistochemical staining demonstrated that sodium citrate could effectively reduce the protein expression of glucose-regulated protein 78 kDa and CCAAT/enhancer-binding protein homologous protein in the model rats, which was consistent with western blot results. Additionally, the high dose of sodium citrate had a stronger protective effect in CRF rats than the low dose of sodium citrate. Conclusions: Sodium citrate has a protective effect on CRF through its effects on ERS.
Renal Failure | 2013
Rongguo Fu; Juan-Juan Wu; Rongliang Xue; Tao Zhang; Li Wang; Xili Wu; Zhaoyang Duan; Lining Jia; Liqun Ma; Yan Du; Linting Wei
Abstract Background: Transforming growth factor-β1 (TGF-β1) is a polypeptide member of the transforming growth factor β superfamily of cytokines and performs many cellular functions. Its overexpression may lead to renal fibrosis. Aim: This study planed to investigate the effects of TGF-β1 on the cell cycle and phenotype of mesangial cells. Methods: Rat mesangial cells were cultured together with different concentrations (0, 1, 2, 5, and 10 ng/mL) of TGF-β1 for specified times from 0 min to 72 h. 0 ng/mL TGF-β1 and 0 min served as controls. Cell cycles were assessed by flow cytometry and α-smooth muscle actin expression (α-SMA) protein expression by western blot analysis. All data were presented as Mean ± SD. Statistical analysis was performed by using one-way analysis of variance and correlation analysis. Results were considered significant at p < 0.05. Results: After 15 min of co-culture with different concentrations of TGF-β1, the percentage of mesangial cells in G0/G1 phase was significantly elevated compared to the control (p < 0.05). 12 h co-culture induced cell hyperplasia, 24 h co-culture obvious up-regulation of α-SMA (p < 0.01) and one or two cells’ myofibroblast phenotype transition, and 36 h co-culture several cells’ phenotype transition. Correlation analysis prompted that the TGF-β1-induced premature aging was time-dependent (p < 0.01). Conclusion: TGF-β1 may induce mesangial cells’ premature senescence and myofibroblast-like phenotype transformation time-dependently, which may contribute to the development of early stage of glomerulosclerosis.
Inflammation | 2016
Yan Ou; Shuiqin Li; Xiaojing Zhu; Baosong Gui; Ganglian Yao; Liqun Ma; Dan Zhu; Rongguo Fu; Heng Ge; Li Wang; Lining Jia; Lifang Tian; Zhaoyang Duan
Citrate is commonly used as an anticoagulant in hemodialysis for chronic renal failure (CRF) and for the regulation of the immune dysfunction in CRF patients. The objective of this study was to investigate the effect of citrate on the balance of T helper 17 (Th17) and regulatory T (Treg) cells in CRF. The levels of blood urea nitrogen (BUN) and serum creatinine (Scr) were significantly increased in the CRF model group compared to the control group, and were decreased in the citrate-treated groups. Citrate treatment inhibited the viability of Th17 cells while elevating the viability of Treg cells in CRF rats. Moreover, Th17-related cytokines significantly decreased while the Treg-related cytokines significantly increased with citrate treatment. Moreover, citrate had a negative influence on the deviation of Th17/Treg cells in CRF rats. Therefore, our study suggests that citrate had an anti-inflammatory effect on CRF through the modulation of the Th17/Treg balance.
Neuroscience Letters | 2012
Rongguo Fu; Rongliang Xue; Jing Wang; Liqun Ma; Jianrui Lv; Li Wang; Ganglian Yao; Heng Ge; Zhao Chen; Zhaoyang Duan; Yarong Wang
BACKGROUND/AIMS Ghrelin can act as a signal for mealtime hunger and meal initiation. Amygdala is indispensable in appetitive behavior motivated by learned emotions. This study was to investigate the alteration of ghrelin in the amygdala of rats with chronic renal failure (CRF) and its relation with uremic anorexia. METHODS SD rats were randomly classified into CRF group and control group (n=16 per group). The CRF model was constructed using 5/6 nephrectomy. When plasma creatinine (PCr) and blood urea nitrogen (BUN) in the CRF group were twice more than the normal level, food intake (g/24h) was measured and then all rats were killed for detection of ghrelin protein expression in the amygdala using immunohistochemical analysis and mRNA expression using RT-PCT. Statistics was conducted with one-way analysis of variance, Student-Newman-Keuls-q test and correlation analysis. RESULTS By the 8th week after the surgery, the BUN and PCr of CRF rats exceeded double the normal level, and their food intake was obviously decreased compared with the controls (P<0.05). The protein and mRNA expression of ghrelin in the amygdala of CRF group were significantly reduced, and there was a positive correlation between this reduction and the decrease in food intake (P<0.05). CONCLUSION The reduction of amygdalas ghrelin in CRF rats may be associated with uremic anorexia.
Kidney & Blood Pressure Research | 2017
Linting Wei; Yan Du; Lining Jia; Xiaotao Ma; Zhao Chen; Jiamei Lu; Lifang Tian; Zhaoyang Duan; Fengming Dong; Zhian Lv; Ganglian Yao; Rongguo Fu; Li Wang
Background/Aims: FK506 is an immunosuppressive drug and a calcineurin inhibitor that has been widely used in kidney disease in recent years. FK506 shows a wide range of biological and pharmaceutical effects; however, the mechanism of its anti- proliferative effect has not been well elucidated. An IgA nephropathy (IgAN) model was used to generate a mesangial cell proliferation model. This study aims to examine the effect of FK506 on IgAN rats and the underlying mechanisms. Methods: Hematuria, proteinuria and renal function were measured. To observe the pathological conditions, we performed HE (hematoxylin - eosin) and PAS (periodic acid - schiff) staining. Transcription and protein expression levels were detected by qRT - PCR (quantitative real-time polymerase chain reaction) and Wb (western blotting). The location and semi-quantitative expression levels of TRPCs, CaN (Calcineurin) and α-SMA were examined by IHC (Immunohistochemical staining). Results: We found that FK506 could improve hematuria, proteinuria and renal function, especially in the HF (high-dose FK506) groups. Renal pathological changes were ameliorated in the treatment groups. FK506 could significantly decrease TRPCs, CaN, phosphorylation of ERK1/2 and α-SMA expression. Conclusion: Taken together, these results suggest that the therapeutic effect of FK506 on IgAN might be partially associated with the down-regulated expression of TRPC channels, CaN and phosphorylation of ERK1/2.
Apmis | 2017
Yan Ou; Zengying Liu; Shuiqin Li; Xiaojing Zhu; Yan Lin; Jin Han; Zhaoyang Duan; Lining Jia; Baosong Gui
Vascular calcification (VC) is a major contributor of cardiovascular dysfunction in chronic renal failure (CRF). Citrate binds calcium and inhibits the growth of calcium crystals. This present study intends to evaluate the effect of citrate on VC in adenine‐induced CRF rats. The rats were randomly divided into five groups: the control group, the citrate control group, model group, model rats with low‐dose treatment of citrate (216 mg/kg) and model rats with high‐dose treatment of citrate (746 mg/kg). The rats were euthanized at 5 weeks with their blood and aorta in detection. The results showed that serum level of blood urea nitrogen, serum creatinine, phosphorus, calcium, and related renal failure function marker were elevated in the model group. Furthermore, the aortic calcium accumulation and alkaline phosphatase activity were significantly increased in the model group compared with control groups. Additionally, hematoxylin–eosin staining results demonstrated that the vascular calcification in aorta is significantly increased in the model group. Finally, the expression of VC‐related proteins including bone morphogenetic protein and osteocalcin were increased in the model group, whereas alpha‐smooth muscle actin was decreased in the model group compared with the control group. However, treatment with citrate caused a reversal effect of all the above events in a dose‐dependent manner. In conclusion, citrate may attenuate vascular calcification in adenine‐induced CRF rats.
Medicine | 2018
Xiaojing Zhu; Shuiqin Li; Qiaona Zhang; Dan Zhu; Yang Xu; Pengqian Zhang; Jin Han; Zhaoyang Duan; Jie Gao; Yan Ou