Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhaozhu Qiu is active.

Publication


Featured researches published by Zhaozhu Qiu.


Nature | 2014

Piezo2 is required for Merkel-cell mechanotransduction

Seung Hyun Woo; Sanjeev S. Ranade; Andy Weyer; Adrienne E. Dubin; Yoshichika Baba; Zhaozhu Qiu; Matt J. Petrus; Takashi Miyamoto; Kritika Reddy; Ellen A. Lumpkin; Cheryl L. Stucky; Ardem Patapoutian

How we sense touch remains fundamentally unknown. The Merkel cell–neurite complex is a gentle touch receptor in the skin that mediates slowly adapting responses of Aβ sensory fibres to encode fine details of objects. This mechanoreceptor complex was recognized to have an essential role in sensing gentle touch nearly 50 years ago. However, whether Merkel cells or afferent fibres themselves sense mechanical force is still debated, and the molecular mechanism of mechanotransduction is unknown. Synapse-like junctions are observed between Merkel cells and associated afferents, and yet it is unclear whether Merkel cells are inherently mechanosensitive or whether they can rapidly transmit such information to the neighbouring nerve. Here we show that Merkel cells produce touch-sensitive currents in vitro. Piezo2, a mechanically activated cation channel, is expressed in Merkel cells. We engineered mice deficient in Piezo2 in the skin, but not in sensory neurons, and show that Merkel-cell mechanosensitivity completely depends on Piezo2. In these mice, slowly adapting responses in vivo mediated by the Merkel cell–neurite complex show reduced static firing rates, and moreover, the mice display moderately decreased behavioural responses to gentle touch. Our results indicate that Piezo2 is the Merkel-cell mechanotransduction channel and provide the first line of evidence that Piezo channels have a physiological role in mechanosensation in mammals. Furthermore, our data present evidence for a two-receptor-site model, in which both Merkel cells and innervating afferents act together as mechanosensors. The two-receptor system could provide this mechanoreceptor complex with a tuning mechanism to achieve highly sophisticated responses to a given mechanical stimulus.


Nature | 2014

Piezo2 is the major transducer of mechanical forces for touch sensation in mice

Sanjeev S. Ranade; Seung Hyun Woo; Adrienne E. Dubin; Rabih Moshourab; Christiane Wetzel; Matt J. Petrus; Jayanti Mathur; Valérie Bégay; Bertrand Coste; James Kevin Mainquist; A. J. Wilson; Allain G. Francisco; Kritika Reddy; Zhaozhu Qiu; John N. Wood; Gary R. Lewin; Ardem Patapoutian

The sense of touch provides critical information about our physical environment by transforming mechanical energy into electrical signals. It is postulated that mechanically activated cation channels initiate touch sensation, but the identity of these molecules in mammals has been elusive. Piezo2 is a rapidly adapting, mechanically activated ion channel expressed in a subset of sensory neurons of the dorsal root ganglion and in cutaneous mechanoreceptors known as Merkel-cell–neurite complexes. It has been demonstrated that Merkel cells have a role in vertebrate mechanosensation using Piezo2, particularly in shaping the type of current sent by the innervating sensory neuron; however, major aspects of touch sensation remain intact without Merkel cell activity. Here we show that mice lacking Piezo2 in both adult sensory neurons and Merkel cells exhibit a profound loss of touch sensation. We precisely localize Piezo2 to the peripheral endings of a broad range of low-threshold mechanoreceptors that innervate both hairy and glabrous skin. Most rapidly adapting, mechanically activated currents in dorsal root ganglion neuronal cultures are absent in Piezo2 conditional knockout mice, and ex vivo skin nerve preparation studies show that the mechanosensitivity of low-threshold mechanoreceptors strongly depends on Piezo2. This cellular phenotype correlates with an unprecedented behavioural phenotype: an almost complete deficit in light-touch sensation in multiple behavioural assays, without affecting other somatosensory functions. Our results highlight that a single ion channel that displays rapidly adapting, mechanically activated currents in vitro is responsible for the mechanosensitivity of most low-threshold mechanoreceptor subtypes involved in innocuous touch sensation. Notably, we find that touch and pain sensation are separable, suggesting that as-yet-unknown mechanically activated ion channel(s) must account for noxious (painful) mechanosensation.


Cell | 2014

SWELL1, a Plasma Membrane Protein, Is an Essential Component of Volume-Regulated Anion Channel

Zhaozhu Qiu; Adrienne E. Dubin; Jayanti Mathur; Buu Tu; Kritika Reddy; Loren Miraglia; Jürgen Reinhardt; Anthony P. Orth; Ardem Patapoutian

Maintenance of a constant cell volume in response to extracellular or intracellular osmotic changes is critical for cellular homeostasis. Activation of a ubiquitous volume-regulated anion channel (VRAC) plays a key role in this process; however, its molecular identity in vertebrates remains unknown. Here, we used a cell-based fluorescence assay and performed a genome-wide RNAi screen to find components of VRAC. We identified SWELL1 (LRRC8A), a member of a four-transmembrane protein family with unknown function, as essential for hypotonicity-induced iodide influx. SWELL1 is localized to the plasma membrane, and its knockdown dramatically reduces endogenous VRAC currents and regulatory cell volume decrease in various cell types. Furthermore, point mutations in SWELL1 cause a significant change in VRAC anion selectivity, demonstrating that SWELL1 is an essential VRAC component. These findings enable further molecular characterization of the VRAC channel complex and genetic studies for understanding the function of VRAC in normal physiology and disease.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Piezo1, a mechanically activated ion channel, is required for vascular development in mice

Sanjeev S. Ranade; Zhaozhu Qiu; Seung Hyun Woo; Sung Sik Hur; Swetha E. Murthy; Stuart M. Cahalan; Jie Xu; Jayanti Mathur; Michael Bandell; Bertrand Coste; Yi Shuan J Li; Shu Chien; Ardem Patapoutian

Significance Ion channels that are activated by mechanical force have been implicated in numerous physiological systems. In mammals, the identity of these channels remains poorly understood. We recently described Piezos as evolutionarily conserved mechanically activated ion channels and showed that Piezo2 is required for activation of touch receptors in the skin. Here we show that Piezo1 is a critical component of endothelial cell mechanotransduction and is required for embryonic development. Piezo1 is expressed in embryonic endothelial cells and is activated by fluid shear stress. Loss of Piezo1 affects the ability of endothelial cells to alter their alignment when subjected to shear stress. These results suggest a potential role for Piezo1 in mechanotransduction in adult cardiovascular function and disease. Mechanosensation is perhaps the last sensory modality not understood at the molecular level. Ion channels that sense mechanical force are postulated to play critical roles in a variety of biological processes including sensing touch/pain (somatosensation), sound (hearing), and shear stress (cardiovascular physiology); however, the identity of these ion channels has remained elusive. We previously identified Piezo1 and Piezo2 as mechanically activated cation channels that are expressed in many mechanosensitive cell types. Here, we show that Piezo1 is expressed in endothelial cells of developing blood vessels in mice. Piezo1-deficient embryos die at midgestation with defects in vascular remodeling, a process critically influenced by blood flow. We demonstrate that Piezo1 is activated by shear stress, the major type of mechanical force experienced by endothelial cells in response to blood flow. Furthermore, loss of Piezo1 in endothelial cells leads to deficits in stress fiber and cellular orientation in response to shear stress, linking Piezo1 mechanotransduction to regulation of cell morphology. These findings highlight an essential role of mammalian Piezo1 in vascular development during embryonic development.


Cell | 2009

Dissociation of EphB2 Signaling Pathways Mediating Progenitor Cell Proliferation and Tumor Suppression

Maria Genander; Michael M. Halford; Nan-Jie Xu; Malin Eriksson; Zuoren Yu; Zhaozhu Qiu; Anna Martling; Gedas Greicius; Sonal Thakar; Timothy Catchpole; Michael J. Chumley; Sofia Zdunek; Chenguang Wang; T. Holm; Stephen P. Goff; Sven Pettersson; Richard G. Pestell; Mark Henkemeyer; Jonas Frisén

Signaling proteins driving the proliferation of stem and progenitor cells are often encoded by proto-oncogenes. EphB receptors represent a rare exception; they promote cell proliferation in the intestinal epithelium and function as tumor suppressors by controlling cell migration and inhibiting invasive growth. We show that cell migration and proliferation are controlled independently by the receptor EphB2. EphB2 regulated cell positioning is kinase-independent and mediated via phosphatidylinositol 3-kinase, whereas EphB2 tyrosine kinase activity regulates cell proliferation through an Abl-cyclin D1 pathway. Cyclin D1 regulation becomes uncoupled from EphB signaling during the progression from adenoma to colon carcinoma in humans, allowing continued proliferation with invasive growth. The dissociation of EphB2 signaling pathways enables the selective inhibition of the mitogenic effect without affecting the tumor suppressor function and identifies a pharmacological strategy to suppress adenoma growth.


Journal of Virology | 2006

Endosomal Proteolysis by Cathepsins Is Necessary for Murine Coronavirus Mouse Hepatitis Virus Type 2 Spike-Mediated Entry

Zhaozhu Qiu; Susan T. Hingley; Graham Simmons; Christopher Yu; Jayasri Das Sarma; Paul Bates; Susan R. Weiss

ABSTRACT Most strains of murine coronavirus mouse hepatitis virus (MHV) express a cleavable spike glycoprotein that mediates viral entry and pH-independent cell-cell fusion. The MHV type 2 (MHV-2) strain of murine coronavirus differs from other strains in that it expresses an uncleaved spike and cannot induce cell-cell fusion at neutral pH values. We show here that while infection of the prototype MHV-A59 strain is not sensitive to pretreatment with lysosomotropic agents, MHV-2 replication is significantly inhibited by these agents. By use of an A59/MHV-2 chimeric virus, the susceptibility to lysosomotropic agents is mapped to the MHV-2 spike, suggesting a requirement of acidification of endosomes for MHV-2 spike-mediated entry. However, acidification is likely not a direct trigger for MHV-2 spike-mediated membrane fusion, as low-pH treatment is unable to overcome ammonium chloride inhibition, and it also cannot induce cell-cell fusion between MHV-2-infected cells. In contrast, trypsin treatment can both overcome ammonium chloride inhibition and promote cell-cell fusion. Inhibitors of the endosomal cysteine proteases cathepsin B and cathepsin L greatly reduce MHV-2 spike-mediated entry, while they have little effect on A59 entry, suggesting that there is a proteolytic step in MHV-2 entry. Finally, a recombinant virus expressing a cleaved MHV-2 spike has the ability to induce cell-cell fusion at neutral pH values and does not require low pH and endosomal cathepsins during infection. These studies demonstrate that endosomal proteolysis by cathepsins is necessary for MHV-2 spike-mediated entry; this is similar to the entry pathway recently described for severe acute respiratory syndrome coronavirus and indicates that coronaviruses may use multiple pathways for entry.


Cell | 2016

LRRC8 Proteins Form Volume-Regulated Anion Channels that Sense Ionic Strength

Ruhma Syeda; Zhaozhu Qiu; Adrienne E. Dubin; Swetha E. Murthy; Maria N. Florendo; Daniel E. Mason; Jayanti Mathur; Stuart M. Cahalan; Eric C. Peters; Mauricio Montal; Ardem Patapoutian

The volume-regulated anion channel (VRAC) is activated when a cell swells, and it plays a central role in maintaining cell volume in response to osmotic challenges. SWELL1 (LRRC8A) was recently identified as an essential component of VRAC. However, the identity of the pore-forming subunits of VRAC and how the channel is gated by cell swelling are unknown. Here, we show that SWELL1 and up to four other LRRC8 subunits assemble into heterogeneous complexes of ∼800 kDa. When reconstituted into bilayers, LRRC8 complexes are sufficient to form anion channels activated by osmolality gradients. In bilayers, as well as in cells, the single-channel conductance of the complexes depends on the LRRC8 composition. Finally, low ionic strength (Γ) in the absence of an osmotic gradient activates the complexes in bilayers. These data demonstrate that LRRC8 proteins together constitute the VRAC pore and that hypotonic stress can activate VRAC through a decrease in cytoplasmic Γ.


Nature | 2017

Piezo2 senses airway stretch and mediates lung inflation-induced apnoea

Keiko Nonomura; Seung Hyun Woo; Rui B. Chang; Astrid Gillich; Zhaozhu Qiu; Allain G. Francisco; Sanjeev S. Ranade; Stephen D. Liberles; Ardem Patapoutian

Respiratory dysfunction is a notorious cause of perinatal mortality in infants and sleep apnoea in adults, but the mechanisms of respiratory control are not clearly understood. Mechanical signals transduced by airway-innervating sensory neurons control respiration; however, the physiological significance and molecular mechanisms of these signals remain obscured. Here we show that global and sensory neuron-specific ablation of the mechanically activated ion channel Piezo2 causes respiratory distress and death in newborn mice. Optogenetic activation of Piezo2+ vagal sensory neurons causes apnoea in adult mice. Moreover, induced ablation of Piezo2 in sensory neurons of adult mice causes decreased neuronal responses to lung inflation, an impaired Hering–Breuer mechanoreflex, and increased tidal volume under normal conditions. These phenotypes are reproduced in mice lacking Piezo2 in the nodose ganglion. Our data suggest that Piezo2 is an airway stretch sensor and that Piezo2-mediated mechanotransduction within various airway-innervating sensory neurons is critical for establishing efficient respiration at birth and maintaining normal breathing in adults.


Proceedings of the National Academy of Sciences of the United States of America | 2010

c-Abl tyrosine kinase regulates cardiac growth and development

Zhaozhu Qiu; Yong Cang; Stephen P. Goff

The c-Abl protein is a ubiquitously expressed nonreceptor tyrosine kinase involved in the development and function of many mammalian organ systems, including the immune system and bone. Here we show that homozygous Abl mutant embryos and newborns on the C57BL/6J background, but not on other backgrounds, display dramatically enlarged hearts and die perinatally. The heart defects can be largely rescued by cardiomyocyte-specific restoration of the full-length c-Abl protein. The cardiac hyperplasia phenotype is not caused by decreased apoptosis, but rather by abnormally increased cardiomyocyte proliferation during later stages of embryogenesis. Genes involved in cardiac stress and remodeling and cell cycle regulation are also up-regulated in the mutant hearts. These findings reveal an essential role for c-Abl in mammalian heart growth and development.


The Journal of Neuroscience | 2010

Abl Family Tyrosine Kinases Are Essential for Basement Membrane Integrity and Cortical Lamination in the Cerebellum

Zhaozhu Qiu; Yong Cang; Stephen P. Goff

The Abl family nonreceptor tyrosine kinases, consisting of closely related Abl and Arg (Abl-related gene), play essential roles in mouse neurulation, but their functions in the subsequent development of CNS are poorly understood. Here, we show that conditional deletion of Abl in precursors of neurons and glia on an Arg knock-out background leads to striking cerebellar malformations, including defects in anterior cerebellar morphogenesis, granule cell ectopia, and hypoplasia. Time course analyses reveal that the abnormal anterior cerebellar foliation results from local disruptions of the basement membrane (BM) located between radial glial endfeet and the meninges during embryonic cerebellar development. Granule cell ectopia and hypoplasia are also associated with the breaches in the BM and abnormal Bergmann glial networks during postnatal cerebellar development. In vitro culture experiments indicate that Abl/Arg-deficient granule cells can interact with glial processes and proliferate normally in response to sonic hedgehog compared to cells isolated from control mice. Consistent with these findings, selective ablation of Abl family kinases in cerebellar granule cells alone does not cause any abnormality, suggesting that deletion of Abl/Arg from glia is likely required for the mutant phenotype. Together, these results provide compelling evidence that Abl and Arg play key redundant roles in BM maintenance and cortical lamination in the cerebellum.

Collaboration


Dive into the Zhaozhu Qiu's collaboration.

Top Co-Authors

Avatar

Ardem Patapoutian

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Adrienne E. Dubin

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Jayanti Mathur

Genomics Institute of the Novartis Research Foundation

View shared research outputs
Top Co-Authors

Avatar

Sanjeev S. Ranade

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Seung Hyun Woo

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Kritika Reddy

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Stephen P. Goff

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Allain G. Francisco

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Bertrand Coste

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Matt J. Petrus

Genomics Institute of the Novartis Research Foundation

View shared research outputs
Researchain Logo
Decentralizing Knowledge