Zhe Ding
Temple University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zhe Ding.
British Journal of Pharmacology | 2009
Zhe Ding; Robert B. Raffa
Background and purpose: Buprenorphine displays attributes of opioids, but also some features distinct from them. We examined spinal and supraspinal signal transduction of buprenorphine‐induced anti‐nociception in mice compared with morphine and fentanyl.
Pharmacology, Biochemistry and Behavior | 2006
Scott M. Rawls; Zhe Ding; Alan Cowan
AM 404 inhibits endocannabinoid uptake and enhances the cannabinoid CB(1)-mediated effects of endogenous cannabinoids. Accumulating evidence also suggests that AM 404 acts at sites other than the endocannabinoid system. One site is the transient receptor potential vanilloid 1 cation channel (TRPV1). A useful endpoint for discriminating between TRPV1- or CB(1)-mediated effects of AM 404 is hypothermia. This is because TRPV1 or CB(1) receptor activation produces a significant hypothermia in rats. The present study investigated the effects of AM 404 (1, 5, 10 and 20 mg/kg, i.p.) on body temperature in rats and the involvement of TRPV1 and CB(1) receptors in the effects of AM 404. Doses of 10 and 20 mg/kg of AM 404 produced significant hypothermia. Pre-treatment with capsazepine (30 mg/kg, i.p.) blocked the hypothermia caused by 10 and 20 mg/kg of AM 404. Pre-treatment with SB 366791 (2 mg/kg, i.p.), a new TRPV1 antagonist, also abolished the hypothermia evoked by AM 404 (20 mg/kg, i.p.). In contrast, pre-treatment with SR 141716A (Rimonabant), a CB(1) antagonist, or AA-5-HT, a fatty acid amide hydrolase (FAAH) blocker, did not affect AM 404-evoked hypothermia. The present data demonstrate that AM 404 evokes a significant hypothermia in rats that is dependent on TRPV1 receptor activation.
European Journal of Pharmacology | 2008
Scott M. Rawls; Federica Cavallo; Anna Capasso; Zhe Ding; Robert B. Raffa
Ceftriaxone (a beta-lactam antibiotic) has recently been identified as having the rare ability to increase the expression and functional activity of the glutamate transporter subtype 1 (GLT-1) in rat spinal cord cultures. GLT-1 has been implicated in diverse neurological disorders and in opioid dependence and withdrawal. It has been speculated that it might also be involved in the physical dependence and withdrawal of other abused drugs, but demonstration of this property can be difficult in mammalian models. Here, we demonstrate for the first time using a planarian model that ceftriaxone attenuates both the development of physical dependence and abstinence-induced withdrawal from cocaine, amphetamine, methamphetamine, and a benzodiazepine (clorazepate) in a concentration-related manner. These results suggest that physical dependence and withdrawal from several drugs involve a common - beta-lactam-sensitive - mechanism in planarians. If these findings can be shown to extend to mammals, beta-lactam antibiotics might represent a novel pharmacotherapy or adjunct approach for treating drug abuse or serve as a template for drug discovery efforts aimed at treating drug abuse, recovery from drug abuse, or ameliorating the withdrawal from chronic use of therapeutic medications.
Neuropeptides | 2007
Scott M. Rawls; Joseph A. Schroeder; Zhe Ding; Tony Rodriguez; Nurulain T. Zaveri
The present study used the endpoint of hypothermia to investigate cannabinoid and nociceptin/orphanin FQ (N/OFQ) interactions in conscious animals. Prior work has established that cannabinoids produce hypothermia by activating central cannabinoid CB(1) receptors. The administration of N/OFQ into the brain also causes significant hypothermia. Those data suggest a link between cannabinoid CB(1) receptors and N/OFQ peptide (NOP) receptors in the production of hypothermia. Therefore, we determined if NOP receptor activation is required for cannabinoid-evoked hypothermia and if cannabinoid CB(1) receptor activation is necessary for N/OFQ-induced hypothermia. In actual experiments, a cannabinoid agonist, WIN 55212-2 (2.5, 5, and 10 mg/kg, i.p.), caused significant hypothermia in male Sprague-Dawley rats (200-225 g). A NOP receptor antagonist, JTC-801 (1 mg/kg, i.p.), did not affect body temperature. For combined administration, JTC-801 (1 mg/kg, i.p.) blocked a significant proportion of the hypothermia caused by each dose of WIN 55212-2 (2.5, 5, and 10 mg/kg, i.p.). JTC-801 (1 mg/kg, i.p.) also blocked the hypothermia caused by another cannabinoid agonist, CP-55, 940 (1 mg/kg, i.p.). In separate experiments, the direct administration of N/OFQ (9 microg/rat, i.c.v.) into the brain produced significant hypothermia. The hypothermic effect of N/OFQ was blocked by JTC-801 (1 mg/kg, i.p.) but not by a selective cannabinoid CB(1) antagonist, SR 141716A (5 mg/kg, i.m.). The finding that a NOP receptor antagonist abolishes a significant percentage of cannabinoid-induced hypothermia suggests that NOP receptor activation is required for cannabinoids to produce hypothermia. This interaction, quantitated in the present study, is the first evidence that NOP receptors mediate a cannabinoid-induced effect in conscious animals.
Brain Research | 2005
Zhe Ding; Alan Cowan; Scott M. Rawls
The present study investigated a potential role for cannabinoid CB(1) and CB(2) receptors in capsaicin-evoked hypothermia. Capsaicin (1 mg/kg, s.c.) caused rapid and significant hypothermia in rats. Pretreatment with SR 141716A (1, 2.5 and 5 mg/kg, i.p.), a CB(1) antagonist, or SR 144528 (1, 2.5 and 5 mg/kg, i.p.), a CB(2) antagonist, did not affect capsaicin-induced hypothermia. In separate experiments, the hypothermia caused by WIN 55212-2 (5 mg/kg, i.m.), a cannabinoid agonist, was not significantly altered by capsazepine (10 and 30 mg/kg, i.p.) or SB 366791 (2 mg/kg, i.p.), a novel TRPV1 antagonist. These data suggest that capsaicin causes hypothermia by a CB(1)- and CB(2)-independent mechanism, and that WIN 55212-2 causes hypothermia by a TRPV1-independent mechanism.
Synapse | 2008
Scott M. Rawls; Kristin Gerber; Zhe Ding; Christopher Roth; Robert B. Raffa
Agmatine blocks morphine physical dependence in mammals, but its effects on withdrawal signs caused by other abused drugs have been less studied. One of the reasons is that withdrawal to some of these drugs is difficult to quantify in mammals. An alternative to mammals is planarians, a type of flatworm. Planarians possess mammalian‐like neurotransmitters and display withdrawal from amphetamines, benzodiazepines, cannabinoids, cocaine, and opioids. The withdrawal is manifested as a reduction in locomotor behavior following discontinuation of drug exposure. In the present study, our goal was to identify agmatine in planarians and to determine if planarians exposed to agmatine display withdrawal to methamphetamine, a cannabinoid receptor agonist (WIN 55,212‐2), or a κ‐opioid receptor agonist (U‐50,488H). Neurochemical experiments revealed that the concentration of agmatine in planarians was 185 ± 33.7 pmol per mg of planarian weight (dry weight). In behavioral experiments, withdrawal (i.e., reduced locomotor activity) was observed when planarians exposed to each drug (10 μM) for 60 min were placed into water. The withdrawal was attenuated when methamphetamine‐ or U‐50,488H‐exposed planarians were tested in agmatine (100 μM). Withdrawal was inhibited similarly when planarians coexposed to agmatine (100 μM) plus methamphetamine (10 μM), WIN 55,212‐2 (10 μM), or U‐50,488H (10 μM) were tested in water. Arginine, the metabolic precursor to agmatine, was ineffective. Our results identify endogenous agmatine in planarians and demonstrate that agmatine exposure blocks withdrawal to three different drugs in planarians. This suggests that a change in agmatine signaling is a common mechanism in the withdrawal caused by these drugs, at least in planarians. Synapse 62:927–934, 2008.
Neuropeptides | 2008
Scott M. Rawls; Steven Baron; Zhe Ding; Christopher Roth; Nurulain T. Zaveri; Robert B. Raffa
Planarians display a concentration-related reduction in locomotor activity when amphetamine, cocaine, cannabinoid, or benzodiazepine exposure is abruptly discontinued. In the present study, we tested the hypothesis that abrupt discontinuation of methamphetamine would also cause withdrawal-like behavior in planarians and that the withdrawal-like behavior would be prevented by nociceptin, which has been shown to modulate the effects of methamphetamine in mammals. We observed a concentration-related reduction of locomotor behavior when planarians exposed to methamphetamine (0.1-100 microM) were tested in drug-free water. The withdrawal-like behavior was abolished when methamphetamine (10 microM)-exposed planarians were placed into water containing nociceptin (10 microM) or when planarians co-exposed to methamphetamine (10 microM) and nociceptin (10 microM) were placed into drug-free water. The effects of nociceptin were abolished in the presence of a nociceptin receptor antagonist, JTC-801 (1 microM). Planarians did not display a change in locomotor behavior during exposure to nociceptin (10 microM) or JTC-801 (1 microM) by themselves. These results (1) reveal a functional interaction between nociceptin and methamphetamine in planarians and (2) provide evidence that nociceptin blocks methamphetamine-induced withdrawal-like behavior in planarians through a JTC-801-sensitive mechanism.
Pharmacology | 2005
Scott M. Rawls; Zhe Ding; Alex M. Gray; Alan Cowan
ICI 204448, a selective ĸ-opioid agonist with limited CNS access, can be used to discriminate central and peripheral opioid actions on physiological systems such as pain and thermoregulation. Therefore, we investigated the effect of ICI 204448 (2.5, 5, and 10 mg/kg, s.c.) on male Sprague-Dawley rats exposed to ambient temperatures of 5, 20, or 32°C. ICI 204448 did not alter the body temperature of rats maintained at 20 or 32°C. However, 5 and 10 mg/kg of ICI 204448 evoked significant hypothermia in rats exposed to 5°C. The i.c.v. administration of nor-BNI, a ĸ-opioid antagonist, did not affect the hypothermia produced by the systemic injection of ICI 204448. Thus, an involvement of brain ĸ-opioid receptors in ICI 204448-evoked hypothermia is unlikely. The present data demonstrate for the first time that ICI 204448 produces hypothermia in cold-exposed rats and suggest that the role of peripheral ĸ-opioid receptors in thermoregulation becomes more significant at cold ambient temperatures.
Neuroscience Letters | 2008
Zhe Ding; Alan Cowan; Scott M. Rawls
Numerous studies support a role for the endogenous 5-hydroxytryptamine (5-HT) system in the hypothermic effect of capsaicin. None of those studies, however, selectively delineate a role for 5-HT reuptake or 5-HT receptors in this regard. In the present investigation, we determined if the blockade of 5-HT reuptake or the activation of 5-HT(1A) or 5-HT(2) receptors modulates capsaicin-evoked hypothermia. The administration of capsaicin (0.2-1mg/kg, i.m.) produced dose-related hypothermia. Fluoxetine (10mg/kg, i.p.), a selective serotonin reuptake inhibitor (SSRI), did not affect body temperature. For combined administration, pretreatment with fluoxetine (10mg/kg, i.p.) significantly attenuated the hypothermia caused by capsaicin (0.5 and 1mg/kg, i.m.). For the 5-HT receptor experiments, we pretreated rats with either WAY 100635, a 5-HT(1A) receptor antagonist, or mianserin, a 5-HT(2) receptor antagonist, and then administered a fixed, hypothermic dose of capsaicin (1mg/kg, i.m.). WAY 100635 (1mg/kg, s.c.) administration did not affect capsaicin-evoked hypothermia. This indicates that 5-HT(1A) receptor activation does not play a major role in the hypothermic effect of capsaicin. In contrast, pretreatment with mianserin (10mg/kg, i.p.) enhanced the hypothermic effect of capsaicin (1mg/kg, i.m.). The present data reveal that capsaicin-evoked hypothermia in rats is attenuated by the blockade of 5-HT reuptake and enhanced by the antagonism of 5-HT(2) receptors.
Neuroscience Letters | 2006
Zhe Ding; Alan Cowan; Ronald J. Tallarida; Scott M. Rawls
The present study investigated the effect of a drug combination of capsaicin and L-NAME on hypothermia in rats. Capsaicin administration (0.1, 0.25, 0.5, 1 and 2mg/kg, i.m.) caused a significant hypothermia. L-NAME (50mg/kg, i.p.), a nonspecific nitric oxide synthase (NOS) inhibitor, was ineffective. For combined administration, progressively increasing doses of capsaicin (0.1, 0.25, 0.5, 1 and 2mg/kg, i.p.) were given with a non-hypothermic dose of L-NAME (50mg/kg, i.p.). Experiments revealed that L-NAME (50mg/kg, i.p.) enhanced the hypothermic response to capsaicin (0.25, 0.5, 1, and 2mg/kg, i.m.). Comparison of the graded dose-effect curves for capsaicin alone and capsaicin plus L-NAME revealed a significant difference (P<0.05), thus indicating synergy for the drug interaction. To determine if L-NAME acted centrally, a fixed dose of L-NAME (1mg/rat, i.c.v.) was given with graded doses of capsaicin (0.25, 0.5, 1, and 2mg/kg, i.m.). L-NAME (1mg/rat, i.c.v.) only enhanced the hypothermia at a single dose of capsaicin (0.5mg/kg, i.m.). The super-additive hypothermia produced by the concurrent administration of capsaicin and L-NAME (50mg/kg, i.p.) is the first evidence of synergy for a drug combination of capsaicin and a NOS inhibitor. The synergy is apparent only when L-NAME is given systemically, thus indicating that the inhibition of peripheral NO production enhances the hypothermic response to capsaicin.