Zhe Lin
Adobe Systems
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zhe Lin.
computer vision and pattern recognition | 2011
Zhuolin Jiang; Zhe Lin; Larry S. Davis
A label consistent K-SVD (LC-KSVD) algorithm to learn a discriminative dictionary for sparse coding is presented. In addition to using class labels of training data, we also associate label information with each dictionary item (columns of the dictionary matrix) to enforce discriminability in sparse codes during the dictionary learning process. More specifically, we introduce a new label consistent constraint called ‘discriminative sparse-code error’ and combine it with the reconstruction error and the classification error to form a unified objective function. The optimal solution is efficiently obtained using the K-SVD algorithm. Our algorithm learns a single over-complete dictionary and an optimal linear classifier jointly. It yields dictionaries so that feature points with the same class labels have similar sparse codes. Experimental results demonstrate that our algorithm outperforms many recently proposed sparse coding techniques for face and object category recognition under the same learning conditions.
IEEE Transactions on Image Processing | 2012
Jianchao Yang; Zhaowen Wang; Zhe Lin; Scott D. Cohen; Thomas S. Huang
In this paper, we propose a novel coupled dictionary training method for single-image super-resolution (SR) based on patchwise sparse recovery, where the learned couple dictionaries relate the low- and high-resolution (HR) image patch spaces via sparse representation. The learning process enforces that the sparse representation of a low-resolution (LR) image patch in terms of the LR dictionary can well reconstruct its underlying HR image patch with the dictionary in the high-resolution image patch space. We model the learning problem as a bilevel optimization problem, where the optimization includes an ℓ1-norm minimization problem in its constraints. Implicit differentiation is employed to calculate the desired gradient for stochastic gradient descent. We demonstrate that our coupled dictionary learning method can outperform the existing joint dictionary training method both quantitatively and qualitatively. Furthermore, for real applications, we speed up the algorithm approximately 10 times by learning a neural network model for fast sparse inference and selectively processing only those visually salient regions. Extensive experimental comparisons with state-of-the-art SR algorithms validate the effectiveness of our proposed approach.
european conference on computer vision | 2012
Vuong Le; Jonathan Brandt; Zhe Lin; Lubomir D. Bourdev; Thomas S. Huang
We address the problem of interactive facial feature localization from a single image. Our goal is to obtain an accurate segmentation of facial features on high-resolution images under a variety of pose, expression, and lighting conditions. Although there has been significant work in facial feature localization, we are addressing a new application area, namely to facilitate intelligent high-quality editing of portraits, that brings requirements not met by existing methods. We propose an improvement to the Active Shape Model that allows for greater independence among the facial components and improves on the appearance fitting step by introducing a Viterbi optimization process that operates along the facial contours. Despite the improvements, we do not expect perfect results in all cases. We therefore introduce an interaction model whereby a user can efficiently guide the algorithm towards a precise solution. We introduce the Helen Facial Feature Dataset consisting of annotated portrait images gathered from Flickr that are more diverse and challenging than currently existing datasets. We present experiments that compare our automatic method to published results, and also a quantitative evaluation of the effectiveness of our interactive method.
computer vision and pattern recognition | 2015
Haoxiang Li; Zhe Lin; Xiaohui Shen; Jonathan Brandt; Gang Hua
In real-world face detection, large visual variations, such as those due to pose, expression, and lighting, demand an advanced discriminative model to accurately differentiate faces from the backgrounds. Consequently, effective models for the problem tend to be computationally prohibitive. To address these two conflicting challenges, we propose a cascade architecture built on convolutional neural networks (CNNs) with very powerful discriminative capability, while maintaining high performance. The proposed CNN cascade operates at multiple resolutions, quickly rejects the background regions in the fast low resolution stages, and carefully evaluates a small number of challenging candidates in the last high resolution stage. To improve localization effectiveness, and reduce the number of candidates at later stages, we introduce a CNN-based calibration stage after each of the detection stages in the cascade. The output of each calibration stage is used to adjust the detection window position for input to the subsequent stage. The proposed method runs at 14 FPS on a single CPU core for VGA-resolution images and 100 FPS using a GPU, and achieves state-of-the-art detection performance on two public face detection benchmarks.
international conference on computer vision | 2009
Zhe Lin; Zhuolin Jiang; Larry S. Davis
A prototype-based approach is introduced for action recognition. The approach represents an action as a sequence of prototypes for efficient and flexible action matching in long video sequences. During training, first, an action prototype tree is learned in a joint shape and motion space via hierarchical k-means clustering; then a lookup table of prototype-to-prototype distances is generated. During testing, based on a joint likelihood model of the actor location and action prototype, the actor is tracked while a frame-to-prototype correspondence is established by maximizing the joint likelihood, which is efficiently performed by searching the learned prototype tree; then actions are recognized using dynamic prototype sequence matching. Distance matrices used for sequence matching are rapidly obtained by look-up table indexing, which is an order of magnitude faster than brute-force computation of frame-to-frame distances. Our approach enables robust action matching in very challenging situations (such as moving cameras, dynamic backgrounds) and allows automatic alignment of action sequences. Experimental results demonstrate that our approach achieves recognition rates of 91.07% on a large gesture dataset (with dynamic backgrounds), 100% on the Weizmann action dataset and 95.77% on the KTH action dataset.
international conference on computer vision | 2007
Zhe Lin; Larry S. Davis; David S. Doermann; Daniel DeMenthon
Local part-based human detectors are capable of handling partial occlusions efficiently and modeling shape articulations flexibly, while global shape template-based human detectors are capable of detecting and segmenting human shapes simultaneously. We describe a Bayesian approach to human detection and segmentation combining local part-based and global template-based schemes. The approach relies on the key ideas of matching a part-template tree to images hierarchically to generate a reliable set of detection hypotheses and optimizing it under a Bayesian MAP framework through global likelihood re-evaluation and fine occlusion analysis. In addition to detection, our approach is able to obtain human shapes and poses simultaneously. We applied the approach to human detection and segmentation in crowded scenes with and without background subtraction. Experimental results show that our approach achieves good performance on images and video sequences with severe occlusion.
computer vision and pattern recognition | 2013
Jianchao Yang; Zhe Lin; Scott D. Cohen
We propose a fast regression model for practical single image super-resolution based on in-place examples, by leveraging two fundamental super-resolution approaches- learning from an external database and learning from self-examples. Our in-place self-similarity refines the recently proposed local self-similarity by proving that a patch in the upper scale image have good matches around its origin location in the lower scale image. Based on the in-place examples, a first-order approximation of the nonlinear mapping function from low-to high-resolution image patches is learned. Extensive experiments on benchmark and real-world images demonstrate that our algorithm can produce natural-looking results with sharp edges and preserved fine details, while the current state-of-the-art algorithms are prone to visual artifacts. Furthermore, our model can easily extend to deal with noise by combining the regression results on multiple in-place examples for robust estimation. The algorithm runs fast and is particularly useful for practical applications, where the input images typically contain diverse textures and they are potentially contaminated by noise or compression artifacts.
IEEE Transactions on Pattern Analysis and Machine Intelligence | 2010
Zhe Lin; Larry S. Davis
We propose a shape-based, hierarchical part-template matching approach to simultaneous human detection and segmentation combining local part-based and global shape-template-based schemes. The approach relies on the key idea of matching a part-template tree to images hierarchically to detect humans and estimate their poses. For learning a generic human detector, a pose-adaptive feature computation scheme is developed based on a tree matching approach. Instead of traditional concatenation-style image location-based feature encoding, we extract features adaptively in the context of human poses and train a kernel-SVM classifier to separate human/nonhuman patterns. Specifically, the features are collected in the local context of poses by tracing around the estimated shape boundaries. We also introduce an approach to multiple occluded human detection and segmentation based on an iterative occlusion compensation scheme. The output of our learned generic human detector can be used as an initial set of human hypotheses for the iterative optimization. We evaluate our approaches on three public pedestrian data sets (INRIA, MIT-CBCL, and USC-B) and two crowded sequences from Caviar Benchmark and Munich Airport data sets.
computer vision and pattern recognition | 2013
Haoxiang Li; Gang Hua; Zhe Lin; Jonathan Brandt; Jianchao Yang
Pose variation remains to be a major challenge for real-world face recognition. We approach this problem through a probabilistic elastic matching method. We take a part based representation by extracting local features (e.g., LBP or SIFT) from densely sampled multi-scale image patches. By augmenting each feature with its location, a Gaussian mixture model (GMM) is trained to capture the spatial-appearance distribution of all face images in the training corpus. Each mixture component of the GMM is confined to be a spherical Gaussian to balance the influence of the appearance and the location terms. Each Gaussian component builds correspondence of a pair of features to be matched between two faces/face tracks. For face verification, we train an SVM on the vector concatenating the difference vectors of all the feature pairs to decide if a pair of faces/face tracks is matched or not. We further propose a joint Bayesian adaptation algorithm to adapt the universally trained GMM to better model the pose variations between the target pair of faces/face tracks, which consistently improves face verification accuracy. Our experiments show that our method outperforms the state-of-the-art in the most restricted protocol on Labeled Face in the Wild (LFW) and the YouTube video face database by a significant margin.
european conference on computer vision | 2008
Zhe Lin; Larry S. Davis
We present a learning-based, sliding window-style approach for the problem of detecting humans in still images. Instead of traditional concatenation-style image location-based feature encoding, a global descriptor more invariant to pose variation is introduced. Specifically, we propose a principled approach to learning and classifying human/non-human image patterns by simultaneously segmenting human shapes and poses, and extracting articulation-insensitive features. The shapes and poses are segmented by an efficient, probabilistic hierarchical part-template matching algorithm, and the features are collected in the context of poses by tracing around the estimated shape boundaries. Histograms of oriented gradients are used as a source of low-level features from which our pose-invariant descriptors are computed, and kernel SVMs are adopted as the test classifiers. We evaluate our detection and segmentation approach on two public pedestrian datasets.