Zhe Xing
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zhe Xing.
Science China-chemistry | 2013
Zhe Xing; Jiangtao Hu; Mouhua Wang; WenLi Zhang; ShiNeng Li; Qianhong Gao; Guozhong Wu
An amidoxime-based ultra-high molecular weight polyethylene (UHMWPE) fibrous adsorbent was successfully prepared by γ-irradiation-induced graft copolymerization of acrylonitrile (AN) and acrylic acid (AA), followed by amidoximation. The grafting of AN and AA on the UHMWPE fiber and the amidoximation of the grafted fiber were confirmed by Fourier transform infrared spectroscopy, scanning electron microscopy, and thermogravimetric analysis. The mechanical property of the original and modified UHMWPE fibers was compared by single-filament strength test. The adsorption property of the UHMWPE fibrous adsorbent was evaluated by adsorption test in uranyl nitrate solution and seawater. The surface of the modified UHMWPE fibers was covered by the grafting layer and became rough. The tensile strength of the amidoxime-based UHMWPE fibrous adsorbent was influenced by the absorbed dose and hydrochloric acid elution, but was independent of the grafting yield and amidoximation. The uranium adsorption amount of the amidoxime-based UHMWPE fibrous adsorbent after immersing in seawater for 42 days was 2.3 mg-U/g.
Carbohydrate Polymers | 2016
Qianhong Gao; Jiangtao Hu; Rong Li; Lijuan Pang; Zhe Xing; Lu Xu; Mouhua Wang; Xiaojing Guo; Guozhong Wu
A new kind of non-fluorine-based organic-inorganic hybrid superhydrophobic cotton fabric was successfully prepared by simultaneous radiation-induced graft polymerization of γ-methacryloxypropyl trimethoxy silane (MAPS) and subsequent end-capping modification with hexamethyldisilazane (HMDS). The chemical structure and surface topography of the pristine and modified cotton fabrics were investigated in detail by ATR-FTIR, XPS, (29)Si NMR, SEM and TGA to confirm that the graft reaction and end-capping modification had taken place. The above results demonstrated that the grafting polymerization and following end-capping reaction were completed, and a grafting layer was immobilized onto the surface of the cotton fabric. Surface wettability measurement and oil-water separation showed that the modified cotton surface not only exhibited the superhydrophobicity with a water contact angle of 165°, but also afforded a high efficiency of oil-water separation (96%). In particular, this modified cotton fabric retains superhydrophobicity even after 30 laundering cycles or 400 cycles of abrasion.
ACS Applied Materials & Interfaces | 2016
Jiangtao Hu; Qianhong Gao; Lu Xu; Mingxing Zhang; Zhe Xing; Xiaojing Guo; Kuo Zhang; Guozhong Wu
Anatase nanocrystalline titanium dioxide coatings were produced on ultrahigh molecular weight polyethylene (UHMWPE) fabric by radiation-induced graft polymerization of γ-methacryloxypropyl trimethoxysilane (MAPS) and subsequent cohydrolysis of the graft chains (PMAPS) with tetrabutyl titanate, followed by boiling water treatment for 180 min. The resulting material was coded as UHMWPE-g-PMAPS/TiO2 and characterized by attenuated total reflection infrared spectrometry, differential scanning calorimetry, X-ray diffraction, thermal gravimetry, and ultraviolet absorption spectroscopy, among others. The predominant form of TiO2 in the thin film was anatase. The coating layer was composed of two sublayers: an inner part consisting of an organic-inorganic hybrid layer to prevent photocatalytic degradation of the matrix by TiO2 film, and an outer part consisting of anatase nanocrystalline TiO2 capable of UV absorption. This UHMWPE-g-PMAPS/TiO2 composite exhibited much better thermal resistance than conventional UHMWPE fabric, as reflected by the higher melting point, decreased maximum degradation rate, and higher char yield at 700 °C. Compared with UHMWPE fabric, UHMWPE-g-PMAPS/TiO2 exhibited significantly enhanced UV absorption and excellent duration of UV illumination. Specifically, the UV absorption intensity was 2.4-fold higher than that of UHMWPE fabric; the retention of the break strength of UHMWPE-g-PMAPS/TiO2 reached 92.3% after UV irradiation. This work provides an approach for addressing the issue of self-degradation of TiO2-coated polymeric materials due to the inherent photoactivity of TiO2.
RSC Advances | 2016
Lijuan Pang; Rong Li; Qianhong Gao; Jiangtao Hu; Zhe Xing; Mingxing Zhang; Mouhua Wang; Guozhong Wu
A new chelating polyethylene fibre was synthesised by the radiation-induced graft copolymerisation of glycidyl methacrylate (GMA) onto ultrahigh-molecular-weight polyethylene (UHMWPE) fibres and subsequent ring-opening reaction with 4-amino-1,2,4-triazole. The chemical structure and surface morphology of the modified fibres were characterised by Fourier transform infrared spectroscopy, scanning electron microscopy and X-ray photoelectron spectroscopy. The adsorption behaviour of the fibrous sorbent for Au(III) was investigated in terms of aqueous-solution pH, contact time, initial metal concentration and competition of coexisting metal ions. Resultant fibres exhibited much higher affinity and selectivity for Au3+ ions than all other metal ions (Mg2+, Fe3+, Cu2+, Ca2+, Ni2+ and Cr6+). The affinity coefficient obtained was as high as 97.5–99.9%. The maximum adsorption amount for Au3+ was 429.4 mg g−1. The adsorption of Au(III) followed the pseudo-second-order kinetics model controlled by chemical adsorption. The equilibrium data fitted the Langmuir isotherm model well. In particular, this fibrous adsorbent can be regenerated by treatment in 0.5 M thiourea and 0.5 M H2SO4 solution. The high adsorption capacity can be maintained after at least five adsorption–desorption cycles.
Molecules | 2016
Chenguang Yang; Mouhua Wang; Mingxing Zhang; Xiao-Hu Li; Honglong Wang; Zhe Xing; Lin-Feng Ye; Guozhong Wu
Since the maximum foaming temperature window is only about 4 °C for supercritical CO2 (scCO2) foaming of pristine polypropylene, it is important to raise the melt strength of polypropylene in order to more easily achieve scCO2 foaming. In this work, radiation cross-linked isotactic polypropylene, assisted by the addition of a polyfunctional monomer (triallylisocyanurate, TAIC), was employed in the scCO2 foaming process in order to understand the benefits of radiation cross-linking. Due to significantly enhanced melt strength and the decreased degree of crystallinity caused by cross-linking, the scCO2 foaming behavior of polypropylene was dramatically changed. The cell size distribution, cell diameter, cell density, volume expansion ratio, and foaming rate of radiation-cross-linked polypropylene under different foaming conditions were analyzed and compared. It was found that radiation cross-linking favors the foamability and formation of well-defined cell structures. The optimal absorbed dose with the addition of 2 wt % TAIC was 30 kGy. Additionally, the foaming temperature window was expanded to about 8 °C, making the handling of scCO2 foaming of isotactic polypropylene much easier.
Molecules | 2018
Rong Li; Yuna Li; Maojiang Zhang; Zhe Xing; Hongjuan Ma; Guozhong Wu
This work provides a cost-effective approach for preparing functional polymeric fibers used for removing uranium (U(VI)) from carbonate solution containing NaF. Phosphate-based ultrahigh molecular weight polyethylene (UHMWPE-g-PO4) fibers were developed by grafting of glycidyl methacrylate, and ring-opening reaction using phosphoric acid. Uranium (U(VI)) adsorption capacity of UHMWPE-g-PO4 fibers was dependent on the density of phosphate groups (DPO, mmol∙g−1). UHMWPE-g-PO4 fibers with a DPO of 2.01 mmol∙g−1 removed 99.5% of U(VI) from a Na2CO3 solution without the presence of NaF. In addition, when NaF concentration was 3 g∙L−1, 150 times larger than that of U(VI), the U(VI) removal ratio was still able to reach 92%. The adsorption process was proved to follow pseudo-second-order kinetics and Langmuir isotherm model. The experimental maximum U(VI) adsorption capacity (Qmax) of UHMWPE-g-PO4 fibers reached 110.7 mg∙g−1, which is close to the calculated Qmax (117.1 mg∙g−1) by Langmuir equation. Compared to F−, Cl−, NO3−, and SO42− did not influence U(VI) removal ratio, but, H2PO4− and CO32− significantly reduced U(VI) removal ratio in the order of F− > H2PO4− > CO32−. Cyclic U(VI) sorption-desorption tests suggested that UHMWPE-g-PO4 fibers were reusable. These results support that UHMWPE-g-PO4 fibers can efficiently remove U(VI) from carbonate solutions containing NaF.
Journal of Supercritical Fluids | 2008
Zhe Xing; Guozhong Wu; Shirong Huang; Shimou Chen; Hongyan Zeng
Journal of Supercritical Fluids | 2013
Zhe Xing; Mouhua Wang; Guohao Du; Tiqiao Xiao; Weihua Liu; Qiang Dou; Guozhong Wu
Radiation Physics and Chemistry | 2016
Qianhong Gao; Jiangtao Hu; Rong Li; Zhe Xing; Lu Xu; Mouhua Wang; Xiaojing Guo; Guozhong Wu
Industrial & Engineering Chemistry Research | 2016
Jiangtao Hu; Hongjuan Ma; Zhe Xing; Xiyan Liu; Lu Xu; Rong Li; Changjian Lin; Mouhua Wang; Jingye Li; Guozhong Wu