Zhen-Hua Guo
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zhen-Hua Guo.
PLOS ONE | 2012
Xue-Mei Zhang; Lei Zhao; Zachary Larson-Rabin; De-Zhu Li; Zhen-Hua Guo
Background Transcriptome sequencing can be used to determine gene sequences and transcript abundance in non-model species, and the advent of next-generation sequencing (NGS) technologies has greatly decreased the cost and time required for this process. Transcriptome data are especially desirable in bamboo species, as certain members constitute an economically and culturally important group of mostly semelparous plants with remarkable flowering features, yet little bamboo genomic research has been performed. Here we present, for the first time, extensive sequence and transcript abundance data for the floral transcriptome of a key bamboo species, Dendrocalamus latiflorus, obtained using the Illumina GAII sequencing platform. Our further goal was to identify patterns of gene expression during bamboo flower development. Results Approximately 96 million sequencing reads were generated and assembled de novo, yielding 146,395 high quality unigenes with an average length of 461 bp. Of these, 80,418 were identified as putative homologs of annotated sequences in the public protein databases, of which 290 were associated with the floral transition and 47 were related to flower development. Digital abundance analysis identified 26,529 transcripts differentially enriched between two developmental stages, young flower buds and older developing flowers. Unigenes found at each stage were categorized according to their putative functional categories. These sequence and putative function data comprise a resource for future investigation of the floral transition and flower development in bamboo species. Conclusions Our results present the first broad survey of a bamboo floral transcriptome. Although it will be necessary to validate the functions carried out by these genes, these results represent a starting point for future functional research on D. latiflorus and related species.
Systematic Biology | 2014
Peng-Fei Ma; Yu-Xiao Zhang; Chun-Xia Zeng; Zhen-Hua Guo; De-Zhu Li
The temperate woody bamboos constitute a distinct tribe Arundinarieae (Poaceae: Bambusoideae) with high species diversity. Estimating phylogenetic relationships among the 11 major lineages of Arundinarieae has been particularly difficult, owing to a possible rapid radiation and the extremely low rate of sequence divergence. Here, we explore the use of chloroplast genome sequencing for phylogenetic inference. We sampled 25 species (22 temperate bamboos and 3 outgroups) for the complete genome representing eight major lineages of Arundinarieae in an attempt to resolve backbone relationships. Phylogenetic analyses of coding versus noncoding sequences, and of different regions of the genome (large single copy and small single copy, and inverted repeat regions) yielded no well-supported contradicting topologies but potential incongruence was found between the coding and noncoding sequences. The use of various data partitioning schemes in analysis of the complete sequences resulted in nearly identical topologies and node support values, although the partitioning schemes were decisively different from each other as to the fit to the data. Our full genomic data set substantially increased resolution along the backbone and provided strong support for most relationships despite the very short internodes and long branches in the tree. The inferred relationships were also robust to potential confounding factors (e.g., long-branch attraction) and received support from independent indels in the genome. We then added taxa from the three Arundinarieae lineages that were not included in the full-genome data set; each of these were sampled for more than 50% genome sequences. The resulting trees not only corroborated the reconstructed deep-level relationships but also largely resolved the phylogenetic placements of these three additional lineages. Furthermore, adding 129 additional taxa sampled for only eight chloroplast loci to the combined data set yielded almost identical relationships, albeit with low support values. We believe that the inferred phylogeny is robust to taxon sampling. Having resolved the deep-level relationships of Arundinarieae, we illuminate how chloroplast phylogenomics can be used for elucidating difficult phylogeny at low taxonomic levels in intractable plant groups.
Molecular Phylogenetics and Evolution | 2004
Zhen-Hua Guo; De-Zhu Li
Phylogenetics of 33 species (35 species in the ITS analysis) of the Thamnocalamus group and its allies inferred from partial sequences of the nuclear GBSSI gene and from those of the nuclear ribosomal ITS spacer was discussed in the present paper. The analyses of two separate data and combined data sets were performed using the parsimony method. Two species from Arundinaria and Acidosasa were used as outgroups. All three analyses supported the monophyly of the Thamnocalamus group and its allies, which have pachymorph rhizomes and semelauctant synflorescences with three stamens. The two sampled species of Chimonocalamus were resolved as a strongly supported monophyletic group and as basal in the Thamnocalamus group and its allies in the ITS and combined analyses. The resolution of the Thamnocalamus group and its allies in the GBSSI-gene-based tree was generally poor, while the gene still identified some clades with strongly internal supports, i.e., the Chimonocalamus clade, the Ampelocalamus clade, the clade of Thamnocalamus spathiflorus and its variety, that of Fargesia porphyrea and Yushania bojieana, and the clade of Fargesia edulis and Fargesia fungosa. The topology resulting from the GBSSI and ITS combined data analysis had a better resolution than those from the two separate data sets. T. spathiflorus and its variety comprised another strongly supported basal clade and may be next to the Chimonocalamus clade. The positions of the African Thamnocalamus tessellatus and Arundinaria (Yushania) alpina, and the monotypic Chinese endemic Gaoligongshania were problematic. The Thamnocalamus group per se was resolved as polyphyletic. Most species of Fargesia and Yushania formed a group with no bootstrap support. This assemblage was heterogeneous according to the morphological characters and further investigation is needed. This study implicated that the current limitation of three genera of Thamnocalamus, Fargesia (incl. Borinda) and Yushania may not reflect the true phylogenetic relationships of the complex. The phylogenetic utility of GBSSI gene in closely related woody bamboos was also evaluated.
Molecular Ecology Resources | 2013
Xueqing Wang; Lizeng Zhao; D. A. R. Eaton; De-Zhu Li; Zhen-Hua Guo
Phylogenetic relationships among temperate species of bamboo are difficult to resolve, owing to both the challenge of detecting sufficiently variable markers and their polyploid history. Here, we use restriction site–associated DNA sequencing to identify candidate loci with fixed allelic differences segregating between and within two temperate species of bamboos: Arundinaria faberi and Yushania brevipaniculata. Approximately 27 million paired‐end sequencing reads were generated across four samples. From pooled data, we assembled 67 685 and 70 668 de novo contigs from partial overlap among paired‐end reads, with an average length of 240 and 241 bp for the two species, respectively, which were used to investigate functional classification of RAD tags in a blastx search. Analysed separately by population, we recovered 29 443 putatively orthologous RAD tags shared across the four sampled populations, containing 28 023 sequence variants, of which c. 13 000 are segregating between species, and c. 3000 segregating between populations within each species. Analyses based on these RAD tags yielded robust phylogenetic inferences, even with data set constructed from surprisingly few loci. This study illustrates the potential for reduced‐representation genome data to resolve difficult phylogenetic relationships in temperate bamboos.
Journal of Plant Research | 2001
Zhen-Hua Guo; Yong-Yan Chen; De-Zhu Li; Jun-Bo Yang
Thamnocalamus, Fargesia and Yushania, of the alpine bamboos and one species of Ampelocalamus as an out-group were studied. The results indicated that Thamnocalamus spathiflorus var. crassinodus and the Fargesia spathacea clade form the basal groups but bootstrap support was weak. Among the rest of the species, including species previously placed in Fargesia (plus Borinda) and Yushania, the F. yunnanensis subclade and the F. communis subclade were recognized but internal support for such groups was again low. The result indicated that, Fargesia and Yushania as delimited by morphological characters, are not monophyletic in the ITS phylogeny and require further resolution. We revealed relatively high levels of genetic variability in the alpine bamboos and showed that the ITS region could be used to improve generic delimitation of the woody bamboos in general.
PLOS ONE | 2012
Peng-Fei Ma; Zhen-Hua Guo; De-Zhu Li
Background Compared to their counterparts in animals, the mitochondrial (mt) genomes of angiosperms exhibit a number of unique features. However, unravelling their evolution is hindered by the few completed genomes, of which are essentially Sanger sequenced. While next-generation sequencing technologies have revolutionized chloroplast genome sequencing, they are just beginning to be applied to angiosperm mt genomes. Chloroplast genomes of grasses (Poaceae) have undergone episodic evolution and the evolutionary rate was suggested to be correlated between chloroplast and mt genomes in Poaceae. It is interesting to investigate whether correlated rate change also occurred in grass mt genomes as expected under lineage effects. A time-calibrated phylogenetic tree is needed to examine rate change. Methodology/Principal Findings We determined a largely completed mt genome from a bamboo, Ferrocalamus rimosivaginus (Poaceae), through Illumina sequencing of total DNA. With combination of de novo and reference-guided assembly, 39.5-fold coverage Illumina reads were finally assembled into scaffolds totalling 432,839 bp. The assembled genome contains nearly the same genes as the completed mt genomes in Poaceae. For examining evolutionary rate in grass mt genomes, we reconstructed a phylogenetic tree including 22 taxa based on 31 mt genes. The topology of the well-resolved tree was almost identical to that inferred from chloroplast genome with only minor difference. The inconsistency possibly derived from long branch attraction in mtDNA tree. By calculating absolute substitution rates, we found significant rate change (∼4-fold) in mt genome before and after the diversification of Poaceae both in synonymous and nonsynonymous terms. Furthermore, the rate change was correlated with that of chloroplast genomes in grasses. Conclusions/Significance Our result demonstrates that it is a rapid and efficient approach to obtain angiosperm mt genome sequences using Illumina sequencing technology. The parallel episodic evolution of mt and chloroplast genomes in grasses is consistent with lineage effects.
Scientific Reports | 2015
Peng-Fei Ma; Yu-Xiao Zhang; Zhen-Hua Guo; De-Zhu Li
In flowering plants, three genomes (nuclear, mitochondrial, and plastid) coexist and intracellular horizontal transfer of DNA is prevalent, especially from the plastid to the mitochondrion genome. However, the plastid genomes are generally conserved in evolution and have long been considered immune to foreign DNA. Recently, the opposite direction of DNA transfer from the mitochondrial to the plastid genome has been reported in two eudicot lineages. Here we sequenced 6 plastid genomes of bamboos, three of which are neotropical woody species and three are herbaceous ones. Several unusual features were found, including the duplication of trnT-GGU and loss of one copy of rps19 due to contraction of inverted repeats (IRs). The most intriguing was the ~2.7 kb insertion in the plastid IR regions in the three herbaceous bamboos. Furthermore, the insertion was documented to be horizontally transferred from the mitochondrial to the plastid genome. Our study provided evidence of the mitochondrial-to-plastid DNA transfer in the monocots, demonstrating again that this rare event does occur in other angiosperm lineages. However, the mechanism underlying the transfer remains obscure, and more studies in other plants may elucidate it in the future.
PLOS ONE | 2013
Lei Zhao; Ning Zhang; Peng-Fei Ma; Qi-Fan Liu; De-Zhu Li; Zhen-Hua Guo
BEP clade of the grass family (Poaceae) is composed of three subfamilies, i.e. Bambusoideae, Ehrhartoideae, and Pooideae. Controversies on the phylogenetic relationships among three subfamilies still persist in spite of great efforts. However, previous evidence was mainly provided from plastid genes with only a few nuclear genes utilized. Given different evolutionary histories recorded by plastid and nuclear genes, it is indispensable to uncover their relationships based on nuclear genes. Here, eleven species with whole-sequenced genome and six species with transcriptomic data were included in this study. A total of 121 one-to-one orthologous groups (OGs) were identified and phylogenetic trees were reconstructed by different tree-building methods. Genes which might have undergone positive selection and played important roles in adaptive evolution were also investigated from 314 and 173 one-to-one OGs in two bamboo species and 14 grass species, respectively. Our results support the ((B, P) E) topology with high supporting values. Besides, our findings also indicate that 24 and nine orthologs with statistically significant evidence of positive selection are mainly involved in abiotic and biotic stress response, reproduction and development, plant metabolism and enzyme etc. from two bamboo species and 14 grass species, respectively. In summary, this study demonstrates the power of phylogenomic approach to shed lights on the evolutionary relationships within the BEP clade, and offers valuable insights into adaptive evolution of the grass family.
Scientific Reports | 2017
Xueqin Wang; Xiaying Ye; Lei Zhao; De-Zhu Li; Zhen-Hua Guo; Huifu Zhuang
The temperate bamboos (tribe Arundinarieae, Poaceae) are strongly supported as monophyly in recent molecular studies, but taxonomic delineation and phylogenetic relationships within the tribe lack resolution. Here, we sampled 39 species (36 temperate bamboos and 3 outgroups) for restriction-site associated DNA sequencing (RAD-seq) with an emphasis on Phyllostachys clade and related clades. Using the largest data matrix for the bamboos to date, we were able to infer phylogenetic relationships with unparalleled resolution. The Phyllostachys, Shibataea, and Arundinaria clades defined from plastid phylogeny, were not supported as monophyletic group. However, the RAD-seq phylogeny largely agreed with the morphology-based taxonomy, with two clades having leptomorph rhizomes strongly supported as monophyletic group. We also explored two approaches, BWA-GATK (a mapping system) and Stacks (a grouping system), for differences in SNP calling and phylogeny inference. For the same level of missing data, the BWA-GATK pipeline produced much more SNPs in comparison with Stacks. Phylogenetic analyses of the largest data matrices from both pipelines, using concatenation and coalescent methods provided similar tree topologies, despite the presence of missing data. Our study demonstrates the utility of RAD-seq data for elucidating phylogenetic relationships between genera and higher taxonomic levels in this important but phylogenetically challenging group.
Molecular Ecology Resources | 2014
Li-Na Zhang; Xian-Zhi Zhang; Yu-Xiao Zhang; Chun-Xia Zeng; Peng-Fei Ma; Lei Zhao; Zhen-Hua Guo; De-Zhu Li
The temperate woody bamboos (Arundinarieae) are highly diverse in morphology but lack a substantial amount of genetic variation. The taxonomy of this lineage is intractable, and the relationships within the tribe have not been well resolved. Recent studies indicated that this tribe could have a complex evolutionary history. Although phylogenetic studies of the tribe have been carried out, most of these phylogenetic reconstructions were based on plastid data, which provide lower phylogenetic resolution compared with nuclear data. In this study, we intended to identify a set of desirable nuclear genes for resolving the phylogeny of the temperate woody bamboos. Using two different methodologies, we identified 209 and 916 genes, respectively, as putative single copy orthologous genes. A total of 112 genes was successfully amplified and sequenced by next‐generation sequencing technologies in five species sampled from the tribe. As most of the genes exhibited intra‐individual allele heterozygotes, we investigated phylogenetic utility by reconstructing the phylogeny based on individual genes. Discordance among gene trees was observed and, to resolve the conflict, we performed a range of analyses using BUCKy and HybTree. While caution should be taken when inferring a phylogeny from multiple conflicting genes, our analysis indicated that 74 of the 112 investigated genes are potential markers for resolving the phylogeny of the temperate woody bamboos.