Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhen Lei is active.

Publication


Featured researches published by Zhen Lei.


International Journal of Molecular Sciences | 2015

Exposure of tumor-associated macrophages to apoptotic MCF-7 cells promotes breast cancer growth and metastasis.

Na Zhou; Yizhuang Zhang; Xuehui Zhang; Zhen Lei; Ruobi Hu; Hui Li; Yiqing Mao; Xi Wang; David M. Irwin; Gang Niu; Huanran Tan

Tumor-associated macrophages (TAMs) have been found to be associated with the progression and metastasis of breast cancer. To clarify the mechanisms underlying the crosstalk between TAMs and cancer stem cells (CSCs) in breast cancer recurrence and metastasis, we used a co-culture model of macrophages and apoptotic human breast cancer cell line MCF-7 cells to investigate the effects of TAMs on MCF-7 in vitro and in vivo. Macrophages co-cultured with apoptotic MCF-7 had increased tumor growth and metastatic ability in a nude mouse transplantation assay. The macrophages exposed to apoptotic cells also induce an increase in the proportion of CD44+/CD24− cancer stem-like cells, as well as their proliferative ability accompanied with an increase in mucin1 (MUC1) expression. During this process, macrophages secreted increased amounts of interleukin 6 (IL-6) leading to increased phosphorylation of signal transducers and activators of transcription 3 (STAT3), which likely explains the increased transcription of STAT3 target genes such as TGF-β1 and HIF-1α. Our results indicate that when cancer cells endure chemotherapy induced apoptosis, macrophages in their microenvironment can then activate cancer stem cells to promote cancer growth and metastasis by secreting IL-6, which activates STAT3 phosphorylation to regulate the transcription of its downstream target genes.


Gene | 2013

Resistin disrupts glycogen synthesis under high insulin and high glucose levels by down-regulating the hepatic levels of GSK3β

Rongjing Song; Xi Wang; Yiqing Mao; Hui Li; Zhixin Li; Wei Xu; Rong Wang; Tingting Guo; Ling Jin; Xiaojing Zhang; Yizhuang Zhang; Na Zhou; Ruobi Hu; Jianwei Jia; Zhen Lei; David M. Irwin; Gang Niu; Huanran Tan

The effect of mouse resistin on hepatic insulin resistance in vivo and in vitro, and its possible molecular mechanism were examined. Focusing on liver glycogen metabolism and gluconeogenesis, which are important parts of glucose metabolism, in primary cultures of rat hepatocytes we found that glycogen content was significantly lower (P<0.05) after treatment with recombinant murine resistin only in the presence of insulin plus glucose stimulation. Protein levels of factors in the insulin signaling pathway involved in glycogen synthesis were examined by Western blot analysis, with the only significant change observed being the level of phosphorylated (at Ser 9) glycogen synthase kinase-3β (GSK-3β) (P<0.001). No differences in the protein levels for the insulin receptor β (IRβ), insulin receptor substrates (IRS1 and IRS2), phosphatidylinositol 3-kinase (PI3K), protein kinase B (Akt) or their phosphorylated forms were observed between control and resistin treated primary rat hepatocytes. In a mouse model with high liver-specific expression of resistin, fasting blood glucose levels and liver glycogen content changed. Fasting blood glucose levels were significantly higher (P<0.001) in the model mice, compared to the control mice, while the glycogen content of the liver tissue was about 60% of that of the control mice (P<0.05). The gluconeogenic response was not altered between the experimental and control mice. The level of phosphorylated GSK-3β in the liver tissue was also decreased (P<0.05) in the model mice, consistent with the results from the primary rat hepatocytes. Our results suggest that resistin reduces the levels of GSK-3β phosphorylated at Ser 9 leading to impaired hepatic insulin action in primary rat hepatocytes and in a mouse model with high liver-specific expression of resistin.


International Journal of Molecular Sciences | 2013

Differential Expression of Genes Associated with the Progression of Renal Disease in the Kidneys of Liver-Specific Glucokinase Gene Knockout Mice

Wei Xu; Hui Li; Rong Wang; Zhen Lei; Yiqing Mao; Xi Wang; Yizhuang Zhang; Tingting Guo; Rongjing Song; Xiaojing Zhang; Ling Jin; Zhixin Li; David M. Irwin; Gang Niu; Huanran Tan

Liver glucokinase (GCK) deficient mice possess mild renal complications associated with diabetes. To investigate the progression of kidney disease and identify candidate genes involved in the pathogenesis of renal damage, we examined changes in tissue structure and gene expression in the kidneys of liver-specific GCK knockout (gckw/−) mice and age-matched normal wild-type control (gckw/w) mice as they aged. Suppression subtractive hybridization (SSH) was used to identify candidate genes that showed a pattern of differential expression between kidneys of gckw/− and gckw/w mice at 60 weeks of age. Differential expression of the candidate genes was examined by real-time qPCR in liver-specific gckw/− and gckw/w mice at 16, 26, 40, 60, and 85 weeks of age. Among the candidate genes, only glutathione peroxidase-3 (GPX3) was confirmed to show differential expression by qPCR in the 60-week old mice, however two others genes, MALAT1 and KEG, showed significant changes at other ages. This study shows that liver-specific glucokinase deficient mice display changes in kidney morphology by 40 weeks of age, and that renal complication may be correlated with a reduction in GPX3 levels. Since decreased GPX3 mRNA expression was observed at 26 weeks, which is younger than the age when pathological changes can be seen in kidney biopsies, GPX3 may serve as an early marker for kidney damage.


PLOS ONE | 2013

An over expression APP model for anti-Alzheimer disease drug screening created by zinc finger nuclease technology.

Xiaojing Zhang; Hui Li; Yiqing Mao; Zhixin Li; Rong Wang; Tingting Guo; Ling Jin; Rongjing Song; Wei Xu; Na Zhou; Yizhuang Zhang; Ruobi Hu; Xi Wang; Huakang Huang; Zhen Lei; Gang Niu; David M. Irwin; Huanran Tan

Zinc Finger Nucleases (ZFNs), famous for their ability to precisely and efficiently modify specific genomic loci, have been employed in numerous transgenic model organism and cell constructions. Here we employ the ZFNs technology, with homologous recombination (HR), to construct sequence-specific Amyloid Precursor Protein (APP) knock-in cells. With the use of ZFNs, we established APP knock in cell lines with gene-modification efficiencies of about 7%. We electroporated DNA fragment containing the promoter and the protein coding regions of the zinc finger nucleases into cells, instead of the plasmids, to avoid problems associated with off target homologous recombination, and adopted a pair of mutated FokI cleavage domains to reduce the toxic effects of the ZFNs on cell growth. Since over-expression of APP, or a subdomain of it, might lead to an immediately lethal effect, we used the Cre-LoxP System to regulate APP expression. Our genetically transformed cell lines, w5c1 and s12c8, showed detectable APP and Amyloid β (Aβ) production. The Swedish double mutation in the APP coding sequence enhanced APP and Aβ abundance. What is more, the activity of the three key secretases in Aβ formation could be modulated, indicating that these transgenic cells have potential for drug screening to modify amyloid metabolism in cells. Our transformed cells could readily be propagated in culture and should provide an excellent experimental medium for elucidating aspects of the molecular pathogenesis of Alzheimer’s disease, especially those concerning the amyloidogenic pathways involving mutations in the APP coding sequence. The cellular models may also serve as a tool for deriving potentially useful therapeutic agents.


Journal of Cancer | 2015

Staurosporine Induced Apoptosis May Activate Cancer Stem-Like Cells (CD44+/CD24-) in MCF-7 by Upregulating Mucin1 and EpCAM

Na Zhou; Rong Wang; Yizhuang Zhang; Zhen Lei; Xuehui Zhang; Ruobi Hu; Hui Li; Yiqing Mao; Xi Wang; David M. Irwin; Gang Niu; Huanran Tan

Malignant tumors recur after chemotherapy. A small population of cancer stem-like cells within tumors is now generally considered the prime source of the recurrence. To better understand how cancer stem-like cells induce relapse after fractionated chemotherapy, we examined changes in the CD44+/CD24- cancer stem-like cells population and behavior using the breast cancer cell line MCF-7. Our results show that apart from an increase in the CD44+/CD24- population, proliferation and clone formation, but not migration, were enhanced after recovery from apoptosis induced by two pulses of staurosporine (STS). The distribution of cells in the cell cycle differed between acutely induced apoptosis and fractionated chemotherapy. Sorted CD44+/CD24- stem-like cells from MCF-7 cells recovered from STS treatment possessed greater proliferation abilities. We also observed that mucin1 (MUC1) and Epithelial cell adhesion molecule (EpCAM) were up-regulated in abundance coincidently with proliferation and clone formation enhancement. Our findings suggest that fractionated chemotherapy induced apoptosis could stimulate cancer stem-like cell to behave with a stronger malignant property than cancer cells themselves and MUC1 and EpCAM are important factors involving in this process. By demonstrating changes in cancer stem cell during chemotherapy and identifying the crucial factors, we potentially can target them, to eradicate tumors and overcome cancer relapse.


International Journal of Molecular Sciences | 2015

Role of Glucokinase in the Subcellular Localization of Glucokinase Regulatory Protein

Ling Jin; Tingting Guo; Zhixin Li; Zhen Lei; Hui Li; Yiqing Mao; Xi Wang; Na Zhou; Yizhuang Zhang; Ruobi Hu; Xuehui Zhang; Gang Niu; David M. Irwin; Huanran Tan

Glucokinase (GCK) is the rate-limiting enzyme of liver glucose metabolism. Through protein-protein interactions, glucokinase regulatory protein (GCKR) post-transcriptionally regulates GCK function in the liver, and causes its nuclear localization. However the role of GCK in regulating GCKR localization is unknown. In the present study, using in vitro and in vivo models, we examined the levels of GCK and GCKR, and their subcellular localization. We found that total cellular levels of GCKR did not vary in the in vivo models, but its subcellular localization did. In animals with normal levels of GCK, GCKR is mainly localized to the nuclei of hepatocytes. In seven-day old rats and liver-specific Gck gene knockout mice (animals that lack or have reduced levels of GCK protein), GCKR was found primarily in the cytoplasm. The interaction of GCK with GCKR was further examined using in vitro models where we varied the levels of GCK and GCKR. Varying the level of GCK protein had no effect on total cellular GCKR protein levels. Taken together, our results indicate that GCK is important for the localization of GCKR to the nucleus and raises the possibility that GCKR may have functions in addition to those regulating GCK activity in the cytoplasm.


Cellular Physiology and Biochemistry | 2018

Analysis of Circulating Tumor Cells in Ovarian Cancer and Their Clinical Value as a Biomarker

Xuehui Zhang; Hui Li; Xiuyan Yu; Shanxin Li; Zhen Lei; Chang Li; Qun Zhang; Qing Han; Yuan Li; Kun Zhang; Yuxiang Wang; Congrong Liu; Yiqing Mao; Xi Wang; David M. Irwin; Hongyan Guo; Gang Niu; Huanran Tan

Background/Aims: Monitoring the appearance and progression of tumors are important for improving the survival rate of patients with ovarian cancer. This study aims to examine circulating tumor cells (CTCs) in epithelial ovarian cancer (EOC) patients to evaluate their clinical significance in comparison to the existing biomarker CA125. Methods: Immuomagnetic bead screening, targeting epithelial antigens on ovarian cancer cells, combined with multiplex reverse transcriptase-polymerase chain reaction (Multiplex RT-PCR) was used to detect CTCs in 211 samples of peripheral blood (5 ml) from 109 EOC patients. CTCs and CA125 were measured in serial from 153 blood and 153 serum samples from 51 patients and correlations with treatment were analyzed. Immunohistochemistry was used to detect the expression of tumor-associated proteins in tumor tissues and compared with gene expression in CTCs from patients. Results: CTCs were detected in 90% (98/109) of newly diagnosed patients. In newly diagnosed patients, the number of CTCs was correlated with stage (p=0.034). Patients with stage IA-IB disease had a CTC positive rate of 93% (13/14), much higher than the CA125 positive rate of only 64% (9/14) for the same patients. The numbers of CTCs changed with treatment, and the expression of EpCAM (p=0.003) and HER2 (p=0.035) in CTCs was correlated with resistance to chemotherapy. Expression of EpCAM in CTCs before treatment was also correlated with overall survival (OS) (p=0.041). Conclusion: Detection of CTCs allows early diagnose and expression of EpCAM in CTC positive patients predicts prognosis and should be helpful for monitoring treatment.


Oncotarget | 2017

Tumacrophage: macrophages transformed into tumor stem-like cells by virulent genetic material from tumor cells

Yizhuang Zhang; Na Zhou; Xiuyan Yu; Xuehui Zhang; Shanxin Li; Zhen Lei; Ruobi Hu; Hui Li; Yiqing Mao; Xi Wang; Jinshu Zhang; Yuan Li; Hongyan Guo; David M. Irwin; Gang Niu; Huanran Tan

Tumor-associated macrophages are regarded as tumor-enhancers as they have key roles in the subversion of adaptive immunity and in inflammatory circuits that promote tumor progression. Here, we show that cancer cells can subvert macrophages yielding cells that have gained pro-tumor functions. When macrophages isolated from mice or humans are co-cultured with dead cancer cell line cells, induced to undergo apoptosis to mimic chemotherapy, up-regulation of pro-tumor gene expression was identified. Phagocytosis of apoptotic cancer cells by macrophages resulted in their transformation into tumor stem (initiating)-like cells, as indicated by the expression of epithelial markers (e.g., cytokeratin) and stem cell markers (e.g., Oct4) and their capability to differentiate in vitro and self-renew in serum-free media. Moreover, we identified a subset of monocytes/macrophages cells in the blood of cancer (breast, ovarian and colorectal) patients undergoing chemotherapy that harbor tumor transcripts. Our findings uncover a new role for macrophages in tumor development, where they can be transformed into tumor-like cells, potentially by horizontal gene transfer of tumor-derived genes, thus, by taking advantage of chemotherapy, these transformed macrophages promote tumor metastasis by escaping immune surveillance.Tumor-associated macrophages are regarded as tumor-enhancers as they have key roles in the subversion of adaptive immunity and in inflammatory circuits that promote tumor progression. Here, we show that cancer cells can subvert macrophages yielding cells that have gained pro-tumor functions. When macrophages isolated from mice or humans are co-cultured with dead cancer cell line cells, induced to undergo apoptosis to mimic chemotherapy, up-regulation of pro-tumor gene expression was identified. Phagocytosis of apoptotic cancer cells by macrophages resulted in their transformation into tumor stem (initiating)-like cells, as indicated by the expression of epithelial markers (e.g., cytokeratin) and stem cell markers (e.g., Oct4) and their capability to differentiate in vitro and self-renew in serum-free media. Moreover, we identified a subset of monocytes/macrophages cells in the blood of cancer (breast, ovarian and colorectal) patients undergoing chemotherapy that harbor tumor transcripts. Our findings uncover a new role for macrophages in tumor development, where they can be transformed into tumor-like cells, potentially by horizontal gene transfer of tumor-derived genes, thus, by taking advantage of chemotherapy, these transformed macrophages promote tumor metastasis by escaping immune surveillance.


International Journal of Molecular Sciences | 2015

Zhou, N., et al. Exposure of Tumor-Associated Macrophages to ApoptoticMCF-7 Cells Promotes Breast Cancer Growth and Metastasis. Int. J. Mol. Sci. 2015, 16, 11966–11982.

Na Zhou; Yizhuang Zhang; Xuehui Zhang; Zhen Lei; Ruobi Hu; Hui Li; Yiqing Mao; Xi Wang; David M. Irwin; Gang Niu; Huanran Tan

The authors wish to change Figure 2 in Section 2 of their paper published in IJMS [1]. In Figure 2C, the tumor tissue of the Mac group was mixed up with that of the CoA group. [...]


Cardiovascular Diabetology | 2014

Long term liver specific glucokinase gene defect induced diabetic cardiomyopathy by up regulating NADPH oxidase and down regulating insulin receptor and p-AMPK

Hui Li; Xi Wang; Yiqing Mao; Ruobi Hu; Wei Xu; Zhen Lei; Na Zhou; Ling Jin; Tingting Guo; Zhixin Li; David M. Irwin; Gang Niu; Huanran Tan

Collaboration


Dive into the Zhen Lei's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge