Zhen Ming
University of North Carolina at Chapel Hill
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zhen Ming.
Brain Research | 2001
Zhen Ming; Darin J. Knapp; Robert A. Mueller; George R. Breese; Hugh E. Criswell
Ethanol and the volatile anesthetics share many features including effects on both GABA and NMDA receptors. To determine the degree of similarity between these compounds, we examined the concentration-response curves for ethanol and isoflurane on currents gated by GABA or NMDA. The effects of isoflurane and ethanol on the righting reflex of rats were also observed. The concentration of ethanol causing loss of the righting reflex of rats was 82.3+/-2.9 mM, whereas median concentration of isoflurane exerting that effect was 0.125 mM. Both isoflurane and ethanol inhibited NMDA-gated currents in cultured cerebral cortical neurons at concentrations well below those associated with loss of the righting reflex or anesthesia. However, the effect of isoflurane was greater than that of ethanol and the slope of the concentration-response curve for isoflurane less steep than that for ethanol. Isoflurane enhanced GABA-gated currents at anesthetic concentrations but there was a sharp concentration-response curve with only minimal effects of isoflurane on GABA-gated currents at concentrations associated with loss of the righting reflex. In contrast, ethanol had no effect on GABA-gated currents even at lethal concentrations, i.e. 300 mM or 1.2%. Comparison of the concentration-response curves for the effects of isoflurane on NMDA- and GABA-gated currents has revealed both EC50 and Hill slope for the potentiation of GABA-gated currents were significantly greater than those for inhibition of NMDA-gated currents. These results support the hypothesis that isoflurane has actions on both the GABA and NMDA systems that are not shared by ethanol.
Journal of Pharmacology and Experimental Therapeutics | 2008
Hugh E. Criswell; Zhen Ming; M. Katherine Kelm; George R. Breese
Whereas ethanol has behavioral actions consistent with increased GABAergic function, attempts to demonstrate a direct enhancement of GABA-gated currents by ethanol have produced mixed results. Recent work has suggested that a part of the GABAergic profile of ethanol may result from enhanced GABA release from presynaptic terminals. The present study examines the effect of ethanol on GABA release in several brain regions to assess the regional nature of ethanol-induced GABA release. Whole-cell voltage clamp recording of spontaneous inhibitory postsynaptic currents (sIPSCs) from mechanically dissociated neurons and miniature inhibitory postsynaptic currents (mIPSCs) and paired-pulse ratio (PPR) from a slice preparation were used to quantify GABA release. Ethanol produced a concentration-dependent increase in the frequency of sIPSCs recorded from mechanically dissociated cerebellar Purkinje neurons and mIPSCs from substantia nigra neurons without having an effect on sIPSCs recorded from lateral septal or cerebrocortical neurons. This regional difference in the effect of ethanol on GABA release was confirmed with PPR recording from brain slices. These data indicate that ethanol can act on presynaptic terminals to increase GABA release in some brain regions while having little or no effect on GABA release in others. This regional difference is consistent with earlier in vivo studies in which ethanol affected neural activity and sensitivity to GABA in some, but not all, brain sites.
Brain Behavior and Immunity | 2011
Darin J. Knapp; Buddy A. Whitman; Tiffany A. Wills; Robert A. Angel; David H. Overstreet; Hugh E. Criswell; Zhen Ming; George R. Breese
Stress has been shown to facilitate ethanol withdrawal-induced anxiety. Defining neurobiological mechanisms through which stress has such actions is important given the associated risk of relapse. While CRF has long been implicated in the action of stress, current results show that stress elevates the cytokine TNFα in the rat brain and thereby implicates cytokines in stress effects. In support of this view, prior TNFα microinjection into the central amygdala (CeA) of rats facilitated ethanol withdrawal-induced anxiety-a response that could not be attributed to an increase in plasma corticosterone. To test for a possible interaction between cytokines and CRF, a CRF1-receptor antagonist (SSR125543) administered prior to the repeated administration of TNFα or MCP-1/CCL2 reduced the magnitude of the withdrawal-induced anxiety. This finding provided evidence for cytokine action being dependent upon CRF. Additionally, the sensitizing effect of stress on withdrawal-induced anxiety was reduced by treating the repeated stress exposure prior to ethanol with the MEK inhibitor SL327. Consistent with cytokines having a neuromediator function distinct from a neuroimmune action, TNFα increased firing rate and GABA release from CeA neurons. Thus, an interaction of glial and neuronal function is proposed to contribute to the interaction of stress and chronic ethanol. Interrupting this potential glial-neuronal interaction could provide a novel means by which to alter the development of emotional states induced by stress that predict relapse in the alcoholic.
Anesthesiology | 2002
Zhen Ming; Benjamin L. Griffith; George R. Breese; Robert A. Mueller; Hugh E. Criswell
Background Developmental changes in NR1 splice variants and NR2 subunits of the N-methyl-d-aspartate (NMDA) receptor have been associated with changes in the sensitivity of NMDA receptors to agonists, antagonists, and pharmacologic modulators. The authors have investigated changes in the effect of isoflurane on NMDA-gated currents from cultured cortical neurons with time in culture and related these changes to the subunit composition of the NMDA receptors. Methods N-methyl-d-aspartate–gated currents were measured using whole-cell voltage clamp recording in cortical neurons cultured for 1–4 weeks and HEK 293 cells transiently expressing NR1–1a + NR2A or NR1–1a + NR2B subunit-containing receptors. NMDA alone or NMDA with treatment agents (isoflurane or ifenprodil) was applied to cells using a U tube. Results The effect of isoflurane and the NR2B selective antagonist ifenprodil on NMDA-gated currents from cortical neurons decreased significantly with time in culture. NMDA-gated currents mediated by NR2A-containing receptors were less sensitive to isoflurane than those mediated by NR2B-containing receptors. Tachyphylaxis to repeated application of isoflurane was found in cortical neurons and HEK 293 cells with recombinant NMDA receptors. Hooked tail currents were induced by isoflurane in cultured cortical neurons and HEK 293 cells with expressed NMDA receptors. Conclusions Isoflurane inhibits NMDA-gated currents at concentrations well below 1 minimum alveolar concentration (MAC). This effect of isoflurane was subunit dependent with the NR2B-containing receptors more sensitive to isoflurane than the NR2A-containing receptors. A potent tachyphylaxis occurred after brief exposure to isoflurane.
Brain Research | 2004
Hugh E. Criswell; Zhen Ming; Nathanial Pleasant; Benjamin L. Griffith; Robert A. Mueller; George R. Breese
Volatile hydrocarbon based CNS depressants including short chain alcohols and anesthetics act, in part, by inhibition of the excitatory effect of glutamate at the NMDA receptor. While effects of several of these volatile agents on NMDA-gated currents have been demonstrated, there has been no direct comparison of different chemical classes of CNS depressant drugs on NMDA-gated currents. Here, whole-cell voltage clamp measurements of currents gated by 100 microM NMDA from cultured cerebrocortical neurons were examined in the presence of varying concentrations of the alcohols ethanol and hexanol, the halogenated alcohol trichloroethanol, the halogenated alkane halothane and the halogenated ethers isoflurane and sevoflurane. All drugs tested showed concentration-dependent inhibition of NMDA-gated currents with anesthetic concentrations of each agent producing approximately 30% inhibition of the NMDA-gated current. A rapid-translation perfusion system was used to study the onset and offset kinetics of each of the volatile agents. Onset kinetics for the CNS depressants was similar with tau values near 100 ms. Offset kinetics was more variable with tau ranging from 88.2 ms for ethanol to 221.4 ms for trichloroethanol. These data indicate that a wide variety of volatile hydrocarbon based CNS depressants produce a similar inhibition of NMDA-gated currents and that the kinetics for these agents are inconsistent with an open channel block.
Brain Behavior and Immunity | 2013
Zhen Ming; Hugh E. Criswell; George R. Breese
Anxiety-like responses to stress are accompanied by elevation of brain cytokine-mRNAs. Because cytokines microinjected into central-amygdala (CeA) substitute for stress in a behavioral paradigm, the possibility was raised that cytokines increased by stress influence behavior by affecting CeA-neural activity. Previously, cytokines increased firing-rate of CeA-neurons comparable to that induced by corticotropin-releasing factor (CRF). In this investigation, tumor-necrosis-factor-α (TNFα) increased amplitude, but not frequency of mEPSCs from CeA-neurons. Additionally, TNFα decreased the threshold for triggering action potentials from CeA-neurons without altering membrane-properties during current-clamp recording. Glutamate-receptor-antagonist blockade of mEPSCs and the TNFα-induced reduction in firing threshold implicated glutamate in these changes. A phosphatidyl-inositol-3-kinase-antagonist prevented the TNFα-induced increased in amplitude of mEPSCs, documenting a TNFα intracellular influence. Additionally, TNFα increased frequency, but not amplitude of mIPSCs. CRF-receptor-antagonists were found to prevent the TNFα-induced increase in mIPSC-frequency, without altering the TNFα-induced amplitude increase in mEPSCs or the reduced threshold for action-potentials by TNFα. To clarify how TNFα was increasing CRF-release in the presence of tetrodotoxin, the possibility tested was whether preventing glial-activation would prevent this elevated mIPSC-frequency blocked by CRF-receptor antagonists. Minocycline, which blocks glial activation, prevented the TNFα-induced increase in mIPSC-frequency - a finding consistent with glia contributing to the CRF-involvement in this TNFα action. To fully understand the means by which a CRF1-receptor-antagonist and minocycline prevent TNFα from increasing mIPSC-frequency will require further clarification. Nonetheless, these data provide convincing evidence that release of TNFα by stress could alter neural activity of CeA-neurons by influencing GABA-and glutamate function.
Alcoholism: Clinical and Experimental Research | 2006
George R. Breese; Hugh E. Criswell; Mario Carta; Paul D. Dodson; H. J. Hanchar; Rahul T. Khisti; Manuel Mameli; Zhen Ming; A. L. Morrow; Richard W. Olsen; Thomas S. Otis; Loren H. Parsons; S. N. Penland; Marisa Roberto; George R. Siggins; Carlos Fernando Valenzuela; Martin Wallner
Molecular Therapy | 2002
Rebecca P. Haberman; Hugh E. Criswell; Stephen Snowdy; Zhen Ming; George R. Breese; R. Jude Samulski; Thomas J. McCown
Journal of Pharmacology and Experimental Therapeutics | 2003
Hugh E. Criswell; Zhen Ming; Benjamin L. Griffith; George R. Breese
Alcoholism: Clinical and Experimental Research | 2006
Zhen Ming; Hugh E. Criswell; Guozhong Yu; George R. Breese